
Optimal Intervention on Weighted Networks via Edge Centrality

Dongyue Li Tina Eliassi-Rad Hongyang R. Zhang

Abstract

Suppose there is a spreading process propagating on a
weighted graph. Denote the graph’s weight matrix as
W . How would we reduce the number of nodes affected
during the process? This question appears in recent
studies about counterfactual outcomes of implementing
edge-weight interventions on mobility networks (Chang
et al. (2021)). A practical algorithm to reduce infections
is by removing edges with the highest edge centrality,
defined as the product of two adjacent nodes’ eigen-
scores (Tong et al. (2012)). In this work, we design
edge-weight reduction algorithms on static and time-
varying weighted networks with theoretical guarantees.
First, we prove that edge centrality equals the gradi-
ent of the largest eigenvalue of WW> (over W) and
generalize the gradient for the largest r eigenvalues of
WW>. Second, we design a Frank-Wolfe algorithm for
finding the optimal edge-weight reduction to shrink the
largest r eigenvalues of WW> under any reduction bud-
get. Third, we extend our algorithm to time-varying
networks with guaranteed optimality. We perform a de-
tailed empirical study to validate our approach. Our
algorithm significantly reduces the number of infections
compared with existing methods on eleven weighted net-
works. Further, we illustrate several properties of our
algorithm: the benefit of choosing r, fast convergence to
the optimum, and a linear-scale runtime per iteration.

1 Introduction

Suppose there is a spreading process such as an epi-
demic propagating through a graph. Denote the graph
as G = (V,E). How would we reduce the number of
affected nodes from V during the spreading process?
Many studies have considered this question in the net-
work immunization literature [9, 8], motivated by con-
siderations for controlling the outcome of the diffusion
process [21]. A principal approach from the existing lit-
erature is to optimize spectral properties of G with edge
removal procedures. For example, Tong et al. [27] de-
sign algorithms to reduce the largest eigenvalue of G’s
adjacency matrix by removing a budgeted number of
edges. Le et al. [16] further study how to reduce the

Northeastern University, Boston, MA. Correspondence to All

Authors 〈li.dongyu, t.eliassirad, ho.zhang@northeastern.edu〉.

largest r eigenvalues under a budget constraint of edge
removals. In this work, we revisit the spectral opti-
mization approach on weighted graphs. Let W denote
a nonnegative weight matrix corresponding to the edge
weights of G. We consider edge-weight reduction with
a budgeted amount B that will create the most drop in
the largest r eigenvalues of WW>.

As an example, weighted graphs have appeared
in recent studies about the pandemic. Chang et al.
[5] study the counterfactual outcome of implementing
edge-weight reduction strategies in mobility networks.
Reducing edge weights in mobility networks corresponds
to restricting the mobility of population groups.

An effective algorithm for optimizing the spectral
properties of a graph is by examining edges with the
highest centrality scores. Let λ1(W) denote the largest
singular value of W (notice that the largest eigenvalue of
WW> is equal to the square of λ1(W)). Let ~u1 and ~v1
denote the left and right singular vectors corresponding
to λ1(W), respectively. The centrality score of an edge
(i, j) is equal to ~u1(i) ·~v1(j), which are the i-th and j-th
entry of each vector. Tong et al. [27] show that removing
edges with the highest edge centrality scores effectively
reduces λ1(W). Chen et al. [6] further quantify the
approximation ratio of this approach with submodular
optimization techniques (see also [24]). These works
focus on the case of unweighted graphs, for which the
spectral optimization problem is NP-hard [8]. Notice
that in the case of weighted graphs, the weight of an
edge can be reduced by a fraction. Yu et al. [31]
apply gradient-based optimization for targeted diffusion
which also applies to weighted graphs, with a stopping
criterion until the gradient becomes close to zero.

To motivate our approach, we begin by observing
that the edge centrality score is equal to the gradient of
the largest singular value, up to a scale of 2λ1(W):

∂
((
λ1(W)

)2)
∂Wi,j

= 2λ1(W) · ~u1(i) · ~v1(j).

Notice that the above corresponds to the rank-1 SVD of
W . More generally, for any rank r, the gradient of the
largest r singular values can be efficiently computed via
a rank-r SVD of W . Based on the connection between
edge centrality and gradients, we minimize the largest
r eigenvalues of WW> via the Frank-Wolfe algorithm,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

CH HO MI NY PH
0

10

100

1000

Number of Infections

Airport Advogato Bitcoin
0.2

0.4

0.6

0.8

1.0

Number of Infections

Frank-Wolfe-EC

K-EdgeSelection

Weighted Reduction

Unifrom Reduction

CH HO MI NY PH
0

10

100

1000

Largest Singular Value

Airport Advogato Bitcoin
0

20

40

60

80

Largest Singular Value

Figure 1: Comparison of our algorithm and several existing approaches; the number of infections (×103) is
averaged between fifty simulations. Our approach connects edge centrality with gradients, which leads to an
efficient Frank-Wolfe algorithm. The algorithm can be used on static and time-varying weighted graphs.

which involves direction finding and line search. We
show an efficient way to find the descent direction by
reducing edges with the highest edge centrality (see
Theorem 3.1). We then recompute the eigenscores at
each iteration, which is also related to the approach of
Le et al. [16]. By comparison, our algorithm adapts to
weighted graphs and is guaranteed to converge to the
global optimum (see Theorem 3.2).

With the connection between edge centrality and
gradients, we extend our algorithm to time-varying
networks, which are sequences of graphs with evolving
weight matrices. We provide the eigenscore for each
edge of every graph in the sequence and design an
algorithm for optimizing the largest r eigenvalues of
the product of all weight matrices in the sequence (cf.
Prakash et al. [23, Sec. 4.2]).

We evaluate our algorithms by simulating an epi-
demic model on eleven weighted graphs. In the static
case, our approach achieves on average 25.5% improve-
ment over baselines during SEIR model simulations.
The largest singular value decreases by an average of
25.1% more than the baselines. See Figure 1 for an il-
lustration. Meanwhile, our approach is also effective for
SIR and SIS models. Further, for several time-varying
networks, our algorithm reduces the number of infec-
tions by over 6.9%.

The rest of our paper is organized as follows. In
Section 2, we formally define the spectral optimization
problem on weighted graphs. Then in Section 3,
we develop two algorithms for this problem on static
and time-varying networks, respectively. We validate
our approach with extensive experiments in Section 4.
Lastly, we discuss several related literature in Section 5
and questions for future work in Section 6.

2 Preliminaries

Problem setup. Given a spreading process on a
network, we are interested in designing algorithms to
reduce the number of affected nodes. Let G = (V ,E)
be a weighted and possibly directed graph. Let V be
the set of vertices and E be the set of edges. We use W
to denote a non-negative weight matrix over the edges,
with Wi,j being its (i, j)-th entry. Suppose there is an
arbitrary edge-weight reduction budget B. How should
we allocate the budget across the edges?

To answer this question, we consider an eigenvalue
optimization approach that has been the basis of prior
works for unweighted graphs [3, 22, 27, 9]. The idea
behind eigenvalue optimization approaches is to modify
the weight matrix W so that its largest eigenvalue is
most reduced. We extend the eigenvalue minimization
approach to weighted networks as follows. Let M be an
n by n matrix, where n is the number of nodes in V .
Given a rank r, let λk(M) be the k-th largest singular
value of M . We consider the following problem:

min
M

f(M) =

r∑
k=1

(
λk(M)

)2
(2.1)

s.t.
∑

(i,j)∈E

(
Wi,j −Mi,j

)
≤ B

0 ≤Mi,j ≤Wi,j , ∀ (i, j) ∈ E,

Mi,j = 0, ∀ (i, j) /∈ E.

After solving the above problem, we get a reduced
weight matrix M as the solution of our intervention
strategy. Notice that we approach this problem from
an optimization perspective. Questions including in-
terpreting the solution would be interesting questions
for future work. As a remark, the square of λk(M) is
equal to the k-th largest eigenvalue of MM>. Thus,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

the objective in equation (2.1) includes the top-r eigen-
values (see also Le et al. [16]). The reason is because
the other top eigenvalues could still affect the spread-
ing process in subgraphs of G [1, 12, 16, 31]. In Figure
2, we first illustrate that reducing the largest singular
value of G indeed reduces the number of infections dur-
ing simulated spreading processes. In Section 4.4, we
further demonstrate that having the freedom to choose
the rank r helps reduce the number of infections.

0 1000 2000
Largest singular value

0

1

2

3

4

In
fe

ct
io

n
s
×

10
3

p = 0.12

p = 0.08

p = 0.04

Figure 2: The number of infections strongly correlates
with the largest singular value of the graph: more
infections are observed for higher values of λ1(W) (by
rescaling W). The spreading rate is denoted as p.

Example. To give an example of weighted graphs in
epidemic spreading, we can consider mobility networks,
which describe the movements from groups of individ-
uals to locations. The graph is weighted by the num-
ber of movement records. For instance, Chang et al.
[5] introduce a mobility-based modeling approach to fit
the observed number of infections. Their approach in-
volves fitting a metapopulation SEIR model with pub-
licly available mobility records. Recall that an SEIR
model uses four compartments to capture a spreading
process: Susceptible (S), Exposed (E), Infected (I), and
Recovered (R). Notice that in their case, the mobility
network is bipartite: one side being points of interest
(POIs) and the other side being census block groups
(CBGs). One way to convert the weighted bipartite
network to our problem setup is by joining the traffic
across all POIs for every pair of CBGs via a matrix
multiplication.

3 Spectral Optimization with Frank-Wolfe

We present a new algorithm to optimize problem (2.1)
efficiently. We start by observing that the gradient
of f(M) is equivalent to the edge centrality scores.
Then, we develop an iterative algorithm with an efficient
inner loop that reduces edges with the highest edge
centrality. Lastly, we extend our algorithm to time-
varying networks.

3.1 Edge centrality as gradient To motivate our
approach, we begin by reviewing the approach of Tong
et al. [27], which introduces edge centrality to reduce
f(W) for the case of r = 1. The edge centrality score is
defined as the product of the eigenvector scores from
both ends of an edge. Let X be any matrix. Let
~u1 and ~v1 be the left and right singular vector of X,
corresponding to λ1(X). Then, for any edge (i, j) ∈ E,
its edge centrality score is given by ~u1(i) · ~v1(j), where
~u1(i) denotes the i-th coordinate of ~u1 and ~v1(j) denotes
the j-th coordinate of ~v1.

Edge-weight reduction can be viewed as a contin-
uous relaxation of edge removal since the weight of an
edge can be reduced by a fraction. Interestingly, we
show that the edge centrality scores are equal to the
gradient of the largest eigenvalue of XXT with respect
to the edge weights up to scaling. As a result, we gener-
alize edge centrality scores as the gradient of the largest
r singular values of X.

Lemma 3.1. Assume that the singular values of X are
all distinct. Then, for any 1 ≤ i, j ≤ n, the partial
derivative of (λ1(X))2 with respect to Xi,j satisfies

∂
(
(λ1(X))2

)
∂Xi,j

= 2λ1(X) · ~u1(i) · ~v1(j).(3.2)

More generally, for any r = 1, 2, . . . , n, we have

∂
(∑r

k=1(λk(X))2
)

∂Xi,j
= 2

r∑
k=1

λk(X) · ~uk(i) · ~vk(j).(3.3)

Above, ~uk and ~vk are the left and right singular vectors
of X corresponding to λk(X), and the indices corre-
spond to entries of the vectors. The proof of Lemma
3.1 is presented in Appendix A. Given a weight matrix
W of a network, we compute the edge centrality scores
via the best rank-r approximation of W as W̃r. Let(
W̃r

)
i,j

be the edge centrality score of edge (i, j) ∈ E.

We validate that removing edges via top edge centrality
scores effectively reduces infections. Figure 3 shows the
benefit compared with uniform reduction.

3.2 Global optimization via iterative greedy
We now develop the Frank-Wolfe edge centrality mini-
mization algorithm, or Frank-Wolfe-EC, specified in Al-
gorithm 1. The high-level idea is iteratively applying a
greedy selection of edges with the highest edge central-
ity scores while recomputing the scores:

• Input: The primary inputs are graph G with weight
matrix W , an arbitrary budgeted reduction amount
B, and an arbitrary rank r ≤ n.

• Output: An n by n weight matrix M with reduced
edge weights from W .

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

20 40 60 80 100
Number of epochs

2

4

6

8

10

12

−
lo

g(
I

(t
)

N
)

Top-K-EC

Uniform Reduction

No Intervention

(a) Budget is 1% of total edge weights.

20 40 60 80 100
Number of epochs

2

4

6

8

10

12

−
lo

g(
I

(t
)

N
)

Top-K-EC

Uniform Reduction

No Intervention

(b) Budget is 20% of total edge weights.

100 101 102 103

Degree (d)

10−4

10−3

10−2

10−1

100

P
r x

(x
≤

d
)

Cencus Block Groups

Points of Interest

(c) CCDF of nodes.

Figure 3: Comparison of greedy selection and uniform edge-weight reduction on a mobility network. Top-K-EC is
more effective in reducing the infected proportion throughout the SEIR model simulation. Moreover, the groups
and the points of interest in the graph both follow heavy-tailed degree distributions, supporting our selection
using edge centrality scores.

Derivation of the algorithm: At every iteration t
from 1 to T , let Mt be the currently modified weight
matrix. Let ∇f(Mt) be the gradient of f(Mt). The
Frank-Wolfe algorithm [10, 19] computes a descent di-
rection of Mt by minimizing the correlation between the
gradient and the iterate subject to the same constraints
as problem (2.1):

G?
t ← argmin

X
〈X,∇f(Mt)〉 = Tr

[
∇f(Mt)

>X
]

(3.4)

s.t.
∑

(i,j)∈E

(
Wi,j −Xi,j

)
≤ B

0 ≤ Xi,j ≤Wi,j , ∀(i, j) ∈ E,

Xi,j = 0, ∀(i, j) /∈ E.

The core of our approach is to prove that the
optimal descent direction for problem (3.4) is essentially
by removing edges via top edge centrality scores. Let
X be the best rank-r approximation of Mt. Let
(i1, j1), (i2, j2), . . . , (im, jm) be the edges in descending
order of their edge centrality scores, where m is the
number of edges in the graph. Consider the first k
edges whose total weight exceeds the reduction budget
B. Then, the weight of the first k − 1 edges is reduced
to zero. The weight of the last edge decreases with the
remaining budget.

Let us call this procedure Top-K-EdgeCentrality
(cf. Alg. 1). The following result proves that this greedy
procedure yields an optimal solution to problem (3.4)!

Theorem 3.1. The optimal solution G?t (cf. 3.4) is
equal to the output of Top-K-EdgeCentrality(W,B;Mt).

The proof can be found in Appendix A. After
finding the descent direction G?t , the next step of the
Frank-Wolfe algorithm is setting a learning rate ηt
in a range between 0 and 1. This follows standard
procedures from the Frank-Wolfe algorithm [19]. See
Algorithm 1 for the complete pseudo code.

Running time analysis: Next, we examine the num-
ber of iterations needed for Alg. 1 to converge to the
global optimum of problem (2.1). A well-established re-
sult is that for convex objectives, the Frank-Wolfe algo-
rithm will converge to the global minimum under mild
conditions [19]. Note that objective (2.1) is indeed con-
vex. Therefore, our algorithm will provably converge to
the global minimum of problem (2.1), denoted as fOPT.

Theorem 3.2. Let κ be the minimum of λr(Mt) −
λr+1(Mt) over t = 0, 1, . . . , T − 1. Assume that κ is
strictly positive. Then, the following holds for MT :

f(MT)− fOPT ≤
40
(∑

(i,j)∈E W
2
i,j

)
α2

T
,(3.5)

where α2 = κ−1r1/2
(

maxTt=1 λ1(Mt)
)
+r+C, for a fixed

value C > 0.

The convergence rate of O(T−1) in statement (3.5)
is obtained following recent literature (e.g., [14]). This
result guarantees that our algorithm will converge to
the global minimum solution under mild conditions. See
Appendix A for the proof. The constants inherited from
the previous guarantee in statement (3.5) can be quite
large. However, in our experiments, we observe that
less than 30 iterations are sufficient for the algorithm to
converge (at the global optimum).

To recap, the running time of our algorithm is T
times the running time of each iteration, including:

• Computing a truncated rank-r SVD of a sparse ma-
trix with m nonzeros; this requires a time complexity
of O(mr log(m)) [18].

• Sorting an array of size m; this requires O(m log(m))
time complexity.

By comparison, running a linear program solver for
problem (3.4) requires at least O(mn) time complexity
[19]. Thus, our approach is most efficient for small r.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 1 Frank-Wolfe for Static Networks

Input: A graph G = (V ,E) with weight matrix W ; Budget B.

Parameters: Rank r; Iterations T ; Range of learning rate H.

Output: A weight matrix M modified from W .
1: procedure Frank-Wolfe-EdgeCentrality(W,B;T,H)

2: Let M0 = W

3: for t = 0, 1, . . . , T − 1 do
4: G?

t = Top-k-EdgeCentrality(W,B;Mt)

5: Set ηt by minimizing f
(
(1− ηt)Mt + ηtG?

t

)
for ηt ∈ H

6: Mt+1 = (1− ηt)Mt + ηtG?
t

7: end for

8: if there is unused budget in MT then

9: B′ = B − sum(W −MT)
10: M? = Top-k-EdgeCentrality(MT , B

′;MT)

11: end if
12: return M?

13: end procedure

14: procedure Top-k-EdgeCentrality(W,B;M)

15: Let M̃r be the rank-r SVD of M
16: Sort the edges in E by their edge centrality scores from

M̃r; let k be the first value such that the total top-k edge

weights in W exceed B
17: Reduce the first k − 1 edges’ weight to zero and the last

edge’s weight by the remaining budget

18: return the updated W
19: end procedure

3.3 Optimization on time-varying networks
Our study has focused on mitigating the spread in a
static network. Another consideration is that the net-
work topology evolves over time. Therefore, an impor-
tant question is how to tackle such temporal evolution.
Next, we show how to extend our optimization algo-
rithm to time-varying networks.

Derivation of the algorithm: Let the weight ma-
trices of a sequence of graphs be denoted as W =
{W (1),W (2), . . . ,W (s)}. Motivated by the work of
Prakash et al. [23] which shows the epidemic thresh-
old of time-varying networks, we extend the eigenvalue
minimization problem on time-varying networks. Let
M = {M (1),M (2), . . . ,M (s)} be a sequence of modified
weight matrices. We aim to find M that shrinks the
largest eigenvalues of a product matrix:

min
M

f
(
M
)
=

r∑
k=1

(
λk

(s∏
t=1

M (t)
))2

(3.6)

s.t.

s∑
t=1

∑
(i,j)∈E(t)

(
W

(t)
i,j −M

(t)
i,j

)
≤ B

0 ≤M (t)
i,j ≤W

(t)
i,j , ∀(i, j) ∈ E(t), t = 1, . . . , s,

M
(t)
i,j = 0, ∀(i, j) /∈ E(t), t = 1, . . . , s.

Above, E(t) represents the set of edges in the t-th
graph of the sequence. Based on Prakash et al. [23,
Theorem 2], the weight matrix that determines the
epidemic threshold process in time-varying networks is

Algorithm 2 Frank-Wolfe for Time-Varying Networks

Input: A sequence of graphs with weight matrix W in s steps.
Parameters: Same as the static case.

Output: A sequence of matrices M modified from W.
1: procedure Frank-Wolfe-TimeVarying(W, B;T,H)

2: Let M0 =W
3: for t = 0, 1, . . . , T − 1 do

4: Gt = {G?(i)
t }si=1 = Top-k-TimeVarying(W, B;Mt)

5: Set ηt by minimizing f
(
(1−ηk)Mt+ηtGk

)
for ηk ∈ H

6: Mt+1 = {M(i)
t+1 = (1− ηt)M(i)

t + ηtG
?(i)
t : 1 ≤ i ≤ s}

7: end for
8: if there is unused budget in MT then

9: B′ = B −
∑s

i=1 sum(W (i) −M(i)
T)

10: M? = Top-k-TimeVarying(MT , B
′;MT)

11: end if

12: returnM?

13: end procedure

14: procedure Top-k-TimeVarying(W, B;M)

15: Let X̃r be the rank-r SVD of X =
∏s

i=1M
(i)

16: Sort the edges in the union of E(1),E(2), . . . ,E(s) by their
edge centrality scores (cf. Eq. 3.8); let k be the first value

such that the total top-k edge weights from W exceed B

17: Reduce the first k − 1 edges’ weight to zero and the last
edge’s weight by the remaining budget

18: return the updated W
19: end procedure

the joint product of each weight matrix in the sequence:
X =

∏s
t=1M

(t). This is why we minimize the largest
eigenvalues of the product matrix in f(M).

Following Lemma 3.1, we derive the gradient of the

largest r eigenvalues of X>X with respect to M
(t)
i,j , for

any 1 ≤ i, j ≤ n. By the chain rule, we have:

∂f(M)

∂M
(t)
i,j

=
〈∂(∑r

k=1

(
λk(X)

)2)
∂X

,
∂X

∂M
(t)
i,j

〉
.(3.7)

Notice that the first term above on the right is precisely
the edge centrality scores we have derived in Lemma
3.1. The second term is the product of the rest of the
weight matrices in W except that M (t) is replaced by
an indicator matrix, which is the derivative of M (t) with
respect to its (i, j)-th entry. Let X̃r = UrDrV

>
r be the

rank-r SVD of X. We get (cf. Appendix A):

∂f(M)

∂M (t)
= 2
(∏t−1

k=1
M (k)

)>
X̃r

(∏s

k=t+1
M (k)

)>
.(3.8)

Matrix (3.8) encodes the edge centrality scores for every
edge of E(t), at any step t. Thus, we can develop an
algorithm for time-varying networks as the static case.
The complete procedure is described in Algorithm 2.

Running time analysis: Similar to Theorem 3.2,
one can then prove that Algorithm 2 is guaranteed to
converge to the optimum solution of problem (3.6) at
the rate of O(T−1) after T iterations. The details of
this extension can be found in Appendix A.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

4 Experiments

We evaluate our proposed approaches on a range of
weighted graphs and mobility networks. Our experi-
ments seek to address the following questions: First,
does our approach reduce the infections and the largest
singular values well compared to methods from prior
works? Second, what are the effects of each compo-
nent in our approach, e.g., setting the rank r, run-
ning iterative greedy selection, and setting the budget?
Third, does our approach run efficiently in practice? We
present positive results to answer these three questions,
validating the practical benefit of our algorithm.

4.1 Experimental setup

Datasets. We use three weighted graphs in our model
simulations on static networks: (i) An airport traffic
network of flights among commercial airports in the
world. (ii) A trust network of users on the Advogato
platform; (iii) A trust network of users on a Bitcoin
platform. The edge weights in the Airport network
denote the number of flight routes between two airports.
Edge weights in the last two networks denote different
levels of declared trust among users. The edge weights
on the Advogato network are between 0 and 1. The
edge weights on the Bitcoin network range from −10 to
10. We scale the weights to positive by exp(w/5). The
statistics of the networks are listed in Appendix C.

Besides, we use eight mobility networks constructed
with the procedure described in Chang et al. [5]. We
generate the mobility networks based on mobility pat-
terns of eight cities. The edge weights denote the
amount of population that moves from a group to a
location from March 2, 2020, to May 10, 2020. Overall,
the mobility patterns cover 25,341 census block groups
with over 65 million people and 147,638 points of inter-
est. We report the statistics of the mobility networks
in Table 1. We defer a comprehensive discussion of the
construction procedure to their paper.

For time-varying networks, we use two sequences
of weighted trust networks from Bitcoin-Alpha and
Bitcoin-OTC platforms. Each sequence contains ten
trust relationship networks corresponding to five peri-
ods. The edge weights are processed in the same way as
in the static Bitcoin network. We also construct time-
varying mobility networks corresponding to ten weeks
of the same period above for Chicago and Houston. We
describe data sources for the networks in Appendix C.

Baseline methods. The experiments of spreading on
static networks involve the following baseline methods:
(1) K-EdgeDeletion: Delete a set of edges with the high-
est edge centrality scores according to the best rank-1
approximation of W [27]. (2) Weighted reduction: Re-

duce the weight of every edge by a ratio that is propor-
tional to its weight. (3) Uniform reduction: Uniformly
reduce the weight of every edge by the same fraction.
(4) Max occupancy capping: Reduce the cumulative
weights at each POI proportional to its max occupancy.
(5) Capping by POI category: Cap the maximum occu-
pancy of a particular category of POIs. The last three
baselines are adapted from Chang et al. [5].

For time-varying networks, we consider a similar
set of baseline methods, including uniform reduction,
weighted reduction, and the K-EdgeDeletion method
[27]. The difference from methods on static networks
is that edge weight reduction strategies are applied to
all edges in the sequence of networks.

Implementation. We simulate an SEIR model on each
weighted network. On weighted graphs, a node can get
infected by its infectious neighbors with a probability
equal to the edge weight times the transmission rate.
We use a transmission rate 0.05 and an initial exposed
ratio 0.01. On mobility networks, we follow the proce-
dure of Chang et al. [5] to simulate a metapopulation
SEIR model in each network where one SEIR model is
instantiated for each CBG. We calibrate the parameters
of SEIR models so that the simulated cases approximate
the reported cases from New York Times COVID-19
data. Besides, we also evaluate our algorithm on other
variants of epidemic models, including SIR and SIS with
the same parameters. We describe the simulation setup
details in Appendix C. For completeness, a brief descrip-
tion of the epidemic models is provided in Appendix B.

In Algorithm 1 and 2, we search the rank parameter
r in [1, 50] and the number of iterations in [5, 30]. For
each result reported in Section 4, we search the two
hyper-parameters 50 times. We use an edge-weight
reduction budget as 5% of the total edge weights.
Results of using other budget amounts are consistent
and are discussed in Section 4.3. We use 30 values from
the range of [10−3, 10−1] as the range of learning rate H.
For weighted graphs, we directly use the weight matrix
as W . For mobility networks, we compose the weight
matrix W by multiplying the bipartite network matrix
and its transpose. All the experiments are conducted
on an AMD 24-Core CPU machine.

4.2 Experimental results We show that both of
our algorithms are effective in controlling infections by
reducing the largest singular value on a range of static
and time-varying networks. We observe consistent
results across various epidemic models, including SEIR,
SIR, and SIS models.

• Drop in the largest singular value: Figure 1
illustrates the largest singular value of the modified
weight matrix of the three weighted graphs. Frank-

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Table 1: Top: Dataset statistics for eight mobility networks. Middle: Comparison of the largest singular value
of the edge-weight reduced matrix. Bottom: Comparison of the total number of infected populations (×103) in
SEIR model simulations. We report the averaged number of infections from fifty independent simulations.

Graphs AT CH DA HO MI NY PH DC

Nodes 11,232 32,390 19,069 38,895 17,858 34,216 18,649 10,590
Edges 154,729 439,262 283,928 671,217 276,109 463,719 260,279 107,733
Avg. edge weight 5.258 4.659 4.921 4.951 4.833 4.749 4.864 4.848

Largest singular value AT CH DA HO MI NY PH DC

No Intervention 5526 1296 2093 14677 555 2413 12032 1406
Uniform Reduction 5250 1231 1988 1394 527 2292 1143 1336
Weighted Reduction 1254 302 564 420 213 4818 374 365
Max Capping 5250 1231 1988 1394 527 2292 1143 1336
POI Category 5526 1295 2073 1467 555 2270 1202 1375
K-EdgeDeletion 1565 257 417 447 216 355 282 227
Top-k-EC 1565 257 417 447 216 355 282 226
Ours (Alg. 1) 1191 125 308 235 169 197 190 188

Infected populations AT CH DA HO MI NY PH DC

No Intervention 48±3 1858±46 91±21 366±26 752±26 3146±21 492±20 41±2
Uniform Reduction 46±2 1762±64 84±11 312±26 671±23 2996±40 463±12 41±1
Weighted Reduction 43±2 782±86 66±3 194±18 43±12 1336±60 342±10 40±1
Max Capping 44±2 1741±65 82±8 315±33 675±26 2990±45 455±15 41±1
POI Category 46±3 1728±62 77±8 283±31 687±25 2950±38 458±17 41±1
K-EdgeDeletion 44±2 346±40 64±2 186±18 78±8 352±27 185±10 39±1
Top-k-EC 45±3 355±46 64±2 187±21 78±7 362±36 178±11 39±1
Ours (Alg. 1) 40±1 166±16 62±2 86±10 8±2 301±88 129±13 39±1

Wolfe-EC reduces the largest singular value more
than baselines by 11.4% on average. Additionally,
Table 1 reports the largest singular value of modified
mobility networks. Frank-Wolfe-EC is 30.7%
more effective than the best baseline on average.

• Reduced number of infections: Figure 1 com-
pares our algorithm to baseline intervention strategies
on three weighted graphs. Overall, our algorithm re-
duces the number of infected nodes by 10.4% more
than baselines on average. Table 1 compares the to-
tal number of infected populations on eight mobility
networks. Note that ours outperform other baselines
by 30.1% on average and up to 80.3%.

• Results for time-varying networks: We find
that on time-varying networks, Frank-Wolfe-TV
also outperforms other baselines. The number of
infections is smaller by 6.9% averaged over both time-
varying weighted graphs and mobility networks.

• Simulation using SIS and SIR: We show that our
approach also helps reduce infections in SIR and SIS
epidemic models. We observe that Frank-Wolfe-
EC reduces the number of infections by 14.7% and
10.8% more on average over the eight static mobility
networks, respectively.

4.3 Ablation studies We ablate the parameters in
our approach and provide further insights into proper-
ties of our algorithm.

• Benefit of choosing ranks: Recall that our algorithm
requires specifying the rank r–the number of top
singular values–in Equation 2.1. We hypothesize that
varying the rank r would lead to different intervention
results. We ablate the performance of our algorithm
by using different r in a range of [1, 50]. The results
show that the performance of the best choice r
outperforms using r = 1 by 40.2% averaged over all
networks. This result justifies our formulation of the
network intervention problem as an optimization for
the sum of largest-r singular values instead of only
the largest single value.

• Benefit of being iterative: The greedy selection algo-
rithm Top-k-EC can be viewed as a special case of
Frank-Wolfe-EC with T = 1. Notice that the it-
erative approach is necessary to get the observed em-
pirical performance. In Table 1, Frank-Wolfe-EC
outperforms Top-k-EC by 31.4% on average, and
the largest singular value is reduced by 33.1% more.

• Varying budget B: We have also observed similar re-
sults by varying the budget for mobility reduction.
We vary the budget from 1% to 20% using the New
York mobility network. We find that our algorithm
outperforms the baselines consistently using different
budgets, similarly for the largest singular value. In-
terestingly, when the level of budget is small (e.g.,
1%), Frank-Wolfe-EC reduces the largest singu-
lar value more significantly than baseline methods.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

105 106 107 108

Number of edges

1

10

102

103

104

S
ec

on
d

s

Figure 4: Runtime of Frank-Wolfe-EC in log-log scale
for one iteration. The number of edges ranges from 104

to 108 and the number of nodes ranges from 103 to 106.

4.4 Runtime report Across all eleven graphs, our
approach converges within 30 iterations (or 17 on aver-
age). Each iteration requires an SVD step that takes
less than 3 seconds. The other steps in each itera-
tion require less than 2.7 seconds. For larger graph
instances, we run our method on seven graphs with
the number of edges included: com-Orkut (117M), com-
LiveJournal (34M), wiki-topcats (28M), web-BerkStan
(7.6M), web-Google (5.1M), web-Stanford (2.3M), and
web-NotreDame (1.4M) from the SNAP datasets. Fig-
ure 4 reports the runtime for one iteration of our algo-
rithm. Notice that the runtime scales nearly-linear with
the number of edges. Our algorithm takes 4943 seconds
on the largest graph with 117M edges and 3M nodes.
These results show that our algorithm runs efficiently
on large-scale graphs.

5 Related Work

There is a significant amount of work about diffusion
processes on networks. A detailed survey from an epi-
demic perspective can be found in Pastor-Satorras et
al. [21]. A key result in the literature is that the largest
eigenvalue of the adjacency matrix (a.k.a. the spectral
radius) characterizes the epidemic threshold for many
propagation models [30, 11, 22]. An important impli-
cation of this result is that the epidemic dies out if the
spectral radius decreases, and this has motivated many
works on epidemic control [28, 16, 8]. Because eigen-
optimization problems via edge additions or deletions
are NP-hard [15], both heuristic solutions and princi-
pled approximation algorithms have been investigated.
A practical approach in the literature is following the
greedy algorithm with a centrality notion (see also [20]).
There is also a related line of work studying diffusion
control in the Firefighter problem [2]. Besides epidemic
spreading, diffusion processes are also studied in social
networks (e.g., [17, 13]).

Our work applies the Frank-Wolfe algorithm which
is a classic algorithm for constrained optimization [10,
19] to study spectral optimization on graphs. The

Frank-Wolfe algorithm and its theoretical property are
well-studied in the machine learning and optimization
literature (see, e.g., Jaggi [14], Tajima et al. [26], and the
references therein). We observe a connection between
edge centrality and gradients which significantly speeds
up the Frank-Wolfe algorithm compared with a naive
implementation using a linear program solver. One rel-
evant application for our approach is to consider node-
level intervention measures. For mobility networks, re-
ducing the weight of a node means restricting a partic-
ular group or location’s mobility. Our approach can be
naturally extended to node-level reduction by similarly
deriving node centrality scores as gradients. Besides,
there are also methods for speeding up eigenscore com-
putation on dynamic graphs [7]. It is conceivable that
one could combine this method with our approach to
achieve the best of both worlds. Finally, there are stud-
ies on the design of vaccine distribution for pandemic
control [32, 25] and optimization for network robustness
[4]. It would be interesting to use the new tools devel-
oped in this paper to study these related problems.

6 Conclusion

This work considered controlling diffusion processes on
weighted graphs. We study minimizing the largest
eigenvalues of the graph and design an efficient algo-
rithm that is guaranteed to converge to the global mini-
mum. We observe a connection between edge centrality
scores and gradients, which provides a new way to de-
rive spectral optimization algorithms on graphs. We
show how to derive them for static and time-varying
networks. Experiments show that our algorithms are ef-
fective on various epidemic models and weighted graphs.

We mention two open questions for future work.
First, it would be interesting to better understand the
metapopulation SEIR model of Chang et al. [5] such as
its epidemic threshold. Second, it would be interesting
to better understand how eigenvalues affect the diffusion
process besides λ1. We hope our work inspires further
algorithmic and theoretical studies about epidemics.

References

[1] R. Andersen, F. Chung, and K. Lang. “Local
graph partitioning using pagerank vectors”. In:
FOCS. 2006.

[2] E. Anshelevich, D. Chakrabarty, A. Hate, and C.
Swamy. “Approximation algorithms for the fire-
fighter problem: Cuts over time and submodular-
ity”. In: ISAAC. Springer, 2009.

[3] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec,
and C. Faloutsos. “Epidemic thresholds in real
networks”. In: TISSEC. 2008.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

[4] H. Chan and L. Akoglu. “Optimizing network ro-
bustness by edge rewiring: a general framework”.
In: Data Min Knowl Disc (2016).

[5] S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B.
Redbird, D. Grusky, and J. Leskovec. “Mobility
network models of COVID-19 explain inequities
and inform reopening”. In: Nature. Nature Pub-
lishing Group, 2021.

[6] C. Chen, R. Peng, L. Ying, and H. Tong. “Net-
work connectivity optimization: Fundamental lim-
its and effective algorithms”. In: KDD. 2018.

[7] C. Chen and H. Tong. “On the eigen-functions
of dynamic graphs: Fast tracking and attribution
algorithms”. In: SADM. 2017.

[8] C. Chen, H. Tong, B. A. Prakash, T. Eliassi-
Rad, M. Faloutsos, and C. Faloutsos. “Eigen-
optimization on large graphs by edge manipula-
tion”. In: TKDD. ACM, 2016.

[9] C. Chen, H. Tong, B. A. Prakash, C. Tsourakakis,
T. Eliassi-Rad, C. Faloutsos, and D. H. Chau.
“Node immunization on large graphs: Theory and
algorithms”. In: TKDE. IEEE, 2015.

[10] M. Frank and P. Wolfe. “An algorithm for
quadratic programming”. In: Naval Research Lo-
gistics Quarterly. 1956.

[11] A. Ganesh, L. Massoulié, and D. Towsley. “The
effect of network topology on the spread of epi-
demics”. In: INFOCOM. IEEE, 2005.

[12] D. F. Gleich and C Seshadhri. “Vertex neighbor-
hoods, low conductance cuts, and good seeds for
local community methods”. In: KDD. 2012.

[13] N. Haghtalab, A. Laszka, A. D Procaccia, Y.
Vorobeychik, and X. Koutsoukos. “Monitoring
stealthy diffusion”. In: Knowl Inf Syst. 2017.

[14] M. Jaggi. “Revisiting Frank-Wolfe: Projection-
free sparse convex optimization”. In: ICML. 2013.

[15] E. B. Khalil, B. Dilkina, and L. Song. “Scalable
diffusion-aware optimization of network topol-
ogy”. In: KDD. 2014.

[16] L. Le, T. Eliassi-Rad, and H. Tong. “MET: A
fast algorithm for minimizing propagation in large
graphs with small eigen-gaps”. In: ICDM. 2015.

[17] Y. Matsubara, Y. Sakurai, B. A. Prakash, L.
Li, and C. Faloutsos. “Rise and fall patterns of
information diffusion: model and implications”.
In: KDD. 2012.

[18] C. Musco and C. Musco. “Randomized block
krylov methods for stronger and faster approx-
imate singular value decomposition”. In: NIPS.
2015.

[19] J. Nocedal and S. Wright. Numerical optimiza-
tion. 2006.

[20] N Parotsidis, E. Pitoura, and P. Tsaparas.
“Centrality-aware link recommendations”. In:
WSDM. ACM, 2016.

[21] R. Pastor-Satorras, C. Castellano, P. Mieghem,
and A. Vespignani. “Epidemic processes in com-
plex networks”. In: Rev Mod Phys. 2015.

[22] B. A. Prakash, D. Chakrabarti, N. Valler, M.
Faloutsos, and C. Faloutsos. “Threshold condi-
tions for arbitrary cascade models on arbitrary
networks”. In: Knowl Inf Syst (2012).

[23] B. A. Prakash, H. Tong, N. Valler, M. Faloutsos,
and C. Faloutsos. “Virus propagation on time-
varying networks: Theory and immunization al-
gorithms”. In: ECML PKDD. 2010.

[24] S. Saha, A. Adiga, B. A. Prakash, and A. K. Vul-
likanti. “Approximation algorithms for reducing
the spectral radius to control epidemic spread”.
In: SDM. 2015.

[25] P. Sambaturu, B. Adhikari, B. A. Prakash, S.
Venkatramanan, and A. Vullikanti. “Designing
effective and practical interventions to contain
epidemics”. In: AAMAS. Springer, 2020.

[26] K. Tajima, Y. Hirohashi, E. Zara, and T. Kato.
“Frank-Wolfe algorithm for learning SVM-type
multi-category classifiers”. In: SDM. 2021.

[27] H. Tong, B. A. Prakash, T. Eliassi-Rad, M.
Faloutsos, and C. Faloutsos. “Gelling, and melt-
ing, large graphs by edge manipulation”. In:
CIKM. 2012.

[28] P. Van Mieghem, D. Stevanović, F. Kuipers, C.
Li, R. Van De Bovenkamp, D. Liu, and H. Wang.
“Decreasing the spectral radius of a graph by link
removals”. In: Physical Review E. APS, 2011.

[29] T. Vu, E. Chunikhina, and R. Raich. “Perturba-
tion expansions and error bounds for the trun-
cated singular value decomposition”. In: Linear
Algebra and its Applications. Elsevier, 2021.

[30] Y. Wang, D. Chakrabarti, C. Wang, and C.
Faloutsos. “Epidemic spreading in real networks:
An eigenvalue viewpoint”. In: SRDS. IEEE, 2003.

[31] S. Yu, L. Torres, S. Alfeld, T. Eliassi-Rad, and
Y. Vorobeychik. “POTION: Optimizing Graph
Structure for Targeted Diffusion”. In: SDM. 2021.

[32] Y. Zhang and B. A. Prakash. “Scalable vaccine
distribution in large graphs given uncertain data”.
In: CIKM. 2014.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Acknowledgement

Thanks to Bijaya Adhikari for bringing reference [23] to the authors’ attention. We would also like to thank
Aditya Prakash for helpful comments and discussions.

Table 2: A table of notations used in our paper for reference.

Symbol Definition

G = (V ,E) Weighted and possibly directed graph

W A nonnegative weight matrix of G

Wi,j The (i, j)-th entry of W
λk(W) The k-th largest singular value of a matrix W

~uk The left singular vector of a weight matrix W corresponding to λk(W)

~vk The right singular vector of a weight matrix W corresponding to λk(W)
~v(i) The i-th coordinate of the vector ~v

X̃r The best rank-r approximation of X
W A sequence of weight matrices from timestamp 1 to s

E(t) The set of edges in the t-th graph of the sequence

W (t) A nonnegative square weight matrix for the graph at timestamp t

‖ · ‖ The `2 norm of a vector or the spectral norm of a matrix
‖· ‖F The Frobenius norm of a matrix

〈·, ·〉 The matrix inner product between two matrices

A Proofs

This section lays out the proofs for our statements in Section 3. First, we prove the connection between edge
centrality and gradients.

Proof of Lemma 3.1. Consider a singular value λk of X, for any k. Let ~uk and ~vk be the left and right singular

vectors of X corresponding to λk, respectively. By the chain rule, it suffices to show that ∂λk(X)
∂Xi,j

= ~uk(i) · ~vk(j).

First, we have ~u>k X = λk~v
>
k . We differentiate over X on both sides of the above equation:

d(~u>k)X + ~u>k d(X) = d(λk)~v>k + λk d(~v>k).(A.1)

Since ~vk is a unit length vector,

d(‖~vk‖2) = 2〈~vk,d(~vk)〉 = 2 d(~v>k)~vk = 0.(A.2)

Thus, by multiplying both sides of equation (A.1) with ~vk, we get

d(~u>k)X~vk + ~u>k d(X)~vk = d(λk)~v>k ~vk + λk d(~v>k)~vk,(A.3)

which is equal to d(λk) since equation (A.2) holds and vk is a unit length vector. Looking at equation (A.3), we
observe

d(~u>k)X~vk = d(~u>k)λk~uk = λk d(~u>k)~uk = 0,(A.4)

where the last step follows similarly to equation (A.2), since ~uk is also a unit length vector. In summary, we have
shown ~u>k d(X)~vk = d(λk). This implies that the derivative of λk over Xi,j is equal to ~uk(i) · ~vk(j). Since this
holds for any k, we thus conclude that equations (3.2) and (3.3) are both true. �

Second, we prove that greedy selection is optimal for the inner loop of the Frank-Wolfe algorithm.

Proof of Theorem 3.1. By Lemma 3.1, for every edge (i, j) ∈ E, the gradient of f(Mt) over this edge is given
by the edge centrality scores. Since Xi,j = 0 for any (i, j) /∈ E, the optimization objective is:

〈X,∇f(M)〉 =
∑

(i,j)∈E

2Xi,j

(r∑
k=1

λk · ~uk(i) · ~vk(j)
)
.(A.5)

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Above, each variable Xi,j is multiplied precisely by the edge centrality of the edge (i, j) (cf. line (15)). Consider
minimizing the equivalent objective (A.5) with the constrains of Problem (3.4). The minimizer, G?t , is achieved
by reducing the weight of the edges with the highest edge centrality to zero until the budget B gets exhausted.
This is precisely the procedure of Top-K-EC from lines (15)-(17). Thus, we have proved this result. �

Third, we derive the convergence guarantee of Algorithm 1.

Proof of Theorem 3.2. We complete the convergence analysis of our algorithm. First, we show that the
objective function f(M) is convex in M . Second, we invoke the result of Jaggi [14], specifically Lemma 7 and
Theorem 1, which show that as long as the gradient ∇f(M) is Lipschitz-continuous and the constraint set has
bounded diameter, the Frank-Wolfe algorithm will converge to the optimum at a rate of O(1

t) after t iterations.
We first show that the sum of top singular values g(M) =

∑r
k=1 λk(M) is convex. With the variational

characterization of singular values, g(M) is equal to

g(M) = max
U>U=V >V=Idr: U∈Rn×r,V ∈Rm×r

〈UV >,M〉.(A.6)

Thus, for any n by m matrix M1,M2, and any α ∈ [0, 1], let Ũ and Ṽ be the maximizer of the above for
f
(
αM1 + (1− α)M2

)
. Therefore,

g
(
αM1 + (1− α)M2

)
= 〈Ũ Ṽ >, αM1 + (1− α)M2〉
≤ α〈Ũ Ṽ >,M1〉+ (1− α)〈Ũ Ṽ >,M2〉
≤ αg(M1) + (1− α)g(M2),

which implies that g(M) is convex. Next, we show that f(M) is convex. For any α ∈ [0, 1],

f(αM1 + (1− α)M2) = g
(

(αM1 + (1− α)M2)T (αM1 + (1− α)M2)
)

≤ α2g(M>1 M1) + (1− α)2g(M>2 M2) + 2α(1− α)g(M>1 M2).

Let Ũ and Ṽ be the maximizer of (A.6) for M>1 M2. We have

2g(M>1 M2) = 2〈Ũ Ṽ >,M>1 M2〉 = 2〈M1Ũ ,M2Ṽ 〉

≤
∥∥∥M1Ũ

∥∥∥2
F

+
∥∥∥M2Ṽ

∥∥∥2
F

= 〈M>1 M1, Ũ Ũ
>〉+ 〈M>2 M2, Ṽ Ṽ

>〉

≤g(M>1 M1) + g(M>2 M2).

Therefore, f(αM1 + (1−α)M2) is less than α · g(M>1 M1) = α · f(M1) plus (1−α) · g(M>2 M2) = (1−α) · f(M2).
Second, we verify that ∇f(M) is α2 Lipschitz continuous in the Frobenius norm. The proof is based on

matrix perturbation bounds. Let M̃ = M + E be a perturbation of M . Let Mr = UrDrV
>
r be the top-r SVD

of M . Let µ1 be the largest singular value of M . Let M̃r = ŨrD̃rṼ
>
r be the top-r SVD of M̃ . First, consider

‖E‖2 ≤ κ/2. By matrix perturbation bounds on the truncated SVD of a matrix (e.g., Theorem 1 of Vu et al.
[29]; the condition is satisfied since κ is the spectral gap between the r-th and (r+ 1)-th largest singular values),
we have

‖Mr − M̃r‖2F ≤ 2‖E‖2
F

+
4λ21
κ2
‖E‖2

F
+ C‖E‖2

F
.

When ‖E‖2 ≥ κ/2, notice that

‖Mr − M̃r‖2F = ‖UrDrV
>
r − ŨrD̃rṼ

>
r ‖2F

≤ 2‖Dr‖2F + 2‖D̃r‖2F
≤ 2rλ21 + 2r(λ1 + ‖E‖2)2,

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

which is at most 2r(3λ21 + 2‖E‖22). The step above uses the Weyl’s Theorem that ‖Dr − D̃r‖2 ≤ ‖E‖2. Taken
together, we conclude that ∇f(M) must be√

max
(

2 +
4λ21
κ2

+ C,
24r · λ21
κ2

+ 4r
)

Lipschitz-continuous. Lastly, the diameter of the constraint set is at most
√∑

(i,j)∈E W
2
i,j , since for every

(i, j) ∈ E, the search space is bounded between 0 and Wi,j . Taken together, we have proved that: f(M) is

convex, ∇f(M) is α2 Lipschitz continuous, and the diameter of the constrained space of problem (2.1) is
√
α1/8.

Using Lemma 7 and Theorem 1 of Jaggi [14], the proof is complete. �

Extension to time-varying networks. Notice that the time-varying extension is a special case of the above
result. Therefore, the same convergence rate of O(T−1) holds for Algorithm 2 towards the global optimum of
problem (3.6).

Lastly, we derive the gradient of the largest r eigenvalues of X>X where X is the product of the weight
matrices in the sequence of time-varying networks (cf. Section 3.3).

Derivation of Equation 3.8. Let {M (1),M (2), . . . ,M (s)} be a sequence of modified weight matrices and
X =

∏s
t=1M

(t). Following Lemma 3.1, we derive the gradient of the largest r eigenvalues of X>X with respect

to M
(t)
i,j , for any 1 ≤ i, j ≤ n. By the chain rule, we have:

∂f(M)

∂M
(t)
i,j

=
〈∂(∑r

k=1

(
λk(X)

)2)
∂X

,
∂X

∂M
(t)
i,j

〉
.(A.7)

Notice that the first term above on the right is precisely the edge centrality scores we have derived in Lemma 3.1.
The second term is essentially the product of the rest of the weight matrices in W except that M (t) is replaced
by an indicator matrix, which is the derivative of M (t) with respect to its (i, j)-th entry.

Let X̃r = UrDrV
>
r be the rank-r SVD of X. Let the product of weight matrices from 1 to t − 1 as

A =
∏t−1
k=1M

(k) and the product of weight matrices from t+ 1 to s as B =
∏s
k=t+1M

(k). A is equal to identity

matrix when t = 1, and B is equal to identity matrix when t = s. Let J i,j as a single-entry indicator matrix
where its (i, j)-th entry is 1 and rest of entries are equal to 0. Then, we can rewrite the gradient as follows:

∂f(M)

∂M
(t)
i,j

= 2
〈
X̃r, AJ

i,jB
〉
= 2

∑
1≤p,q≤n

(
X̃r

)
p,q

(
AJ i,jB

)
p,q

= 2
∑

1≤p,q≤n

(
X̃r

)
p,q
Ap,iBj,q = 2

(
A>X̃rB

>
)
i,j

(A.8)

Thus, we get the gradient of f(M) with respect to the weight matrix M (t) as follows:

∂f(M)

∂M (t)
= 2A>X̃rB

> = 2
(∏t−1

k=1
M (k)

)>
X̃r

(∏s

k=t+1
M (k)

)>
.(A.9)

The derivation of statement (3.8) is now completed. �

B Epidemic Models

We provide a description of the epidemic models that are considered in our experiments. One widely used model
of epidemic spread is the SEIR compartmental model. An SEIR model uses four compartments to capture a
spreading process: Susceptible (S), Exposed (E), Infected (I), and Recovered (R). Every node must belong to one
of the four states during the process. At every time t,

• S(t) denotes the set of susceptible nodes at time t. A node may get exposed if its incoming neighbors are
infectious. The probability depends on the edge weights and the virus transmission rate.

• E(t) denotes the nodes who have been exposed to the virus but are not infectious at time t. In expectation,
a node remains exposed for δE periods.

• I(t) denotes the nodes who are infectious at time t. Each node remains infectious for δI periods in
expectation.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

• R(t) denotes the nodes who have recovered at time t.

For weighted graphs, we simulate an SEIR model. At each time t, we calculate the infection probability for
node i based on the edge weights and transmission rate βBase:

pi = 1−
∏

(i,j)∈E:j∈I(t)
max

(
1−Wi,jβbase, 0

)
.

For mobility networks, we follow the procedure in Chang et al. [5] to simulate the metapopulation SEIR
model. At time t, the transitions between the four states (for ci) are sampled as follows:

N
(t)
Sci
→Eci

∼ Poisson
(S(t)

ci

Nci

λ(t)
)
+Binomial

(
S(t)
ci , λ

(t)
ci

)
.(B.10)

N
(t)
Eci
→Ici

∼ Binomial
(
E(t)

ci ,
1

δE

)
.(B.11)

N
(t)
Ici→Rci

∼ Binomial
(
I(t)ci ,

1

δI

)
.(B.12)

where λ(t) is the aggregate transmission rate over the points of interest; λ
(t)
ci is the base transmission rate within

ci; δE represents the mean latency period; δI is the mean infectious period.

In equation (B.10), λ
(t)
ci is given by the product of the base transmission rate βbase and the proportion of

infectious individuals in CGB ci: λ
(t)
ci = βbase

I(t)ci

Nci
. The infection rate across all the POIs is

λ(t) =

n∑
j=1

λ(t)
pj W

(t)
i,j ; λ

(t)
pj = β(t)

pj

I
(t)
pj∑m

i=1W
(t)
i,j

.

where λ
(t)
pj is the infection rate for POI pj at time t. β

(t)
pj is the transmission rate at POI pj and I

(t)
pj is the number

of infectious individuals in pj at time t. The parameters are estimated as follows. (i) β
(t)
pj is estimated by the

physical area of pj : β
(t)
pj = ψ · ·d2pj ·

V (t)
pj

apj
in which ψ is a transmission constant; apj is the physical area of pj ;

V
(t)
pj =

∑m
i=1W

(t)
i,j represents the number of visitors to pj at time t. (ii) I

(t)
pj is estimated in proportion to the

infectious population from each CBG and their number of visits to pj : I
(t)
pj =

∑m
k=1

I(t)ck

Nck
W

(t)
k,j .

There are many variants of the SEIR model (cf. Prakash et al. [22]). We consider SIR and SIS that share
similar spreading process as the SEIR model. We describe their differences as follows. The SIR model uses three
compartments as the SEIR model except the exposed state. It assumes that there is no latent period of the
disease. Nodes are capable of infecting susceptible nodes directly after being infected. The SIS model uses two
states (Susceptible and Infectious) in a spreading process. It assumes that recovery does not bring immunity and
nodes who have recovered will become susceptible again.

C Experiment Details

Simulation setup. For the weighted graphs, we simulate an SEIR model on each graph. We use a transmission
rate βBase = 0.05 and a initial exposed ratio p0 = 0.01. To avoid infecting all the graph nodes, we simulate for
50 epochs. We use a slightly higher edge-weight reduction budget as 20% of the total edge weights because the
average edge weight in these three graphs is smaller than the mobility networks.

For the experiments concerning mobility networks, we follow the procedures of Chang et al. [5] to simulate
a metapopulation SEIR model in each network. We calibrate the parameters of the SEIR model following their
method. On static mobility networks, We simulate 100 epochs to be consistent with the simulation of Chang et al.
[5]. The results are consistent throughout the simulation. We compare the Frank-Wolfe-EC algorithm with
baseline methods using an edge-weight reduction budget as 5% of the total edge weights. The results of using
other budget amounts are consistent. We use the same set of parameters for SIR and SIS model simulations.

On time-varying mobility networks experiments, we simulate the metapopulation SEIR model on a sequence
of ten networks for 70 epochs or seven epochs for every network. We set the edge-weight reduction budget as 5%
of the total edge weights of the sequence.

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

Table 3: Left: Dataset statistics for three weighted graphs. Right: Dataset statistics for four time-varying
networks. Each time-varying network sequence has ten networks.

Airport Advogato Bitcoin

Nodes 7,977 6,541 3,783

Edges 30,501 51,127 24,186
Avg. edge weight 1.45 0.83 1.46

Bitcoin-Alpha Bitcoin-OTC Chicago Houston

Nodes 3,783 5,881 32,390 38,895

Edges 24,186 35,591 975,569 1,586,683
Avg. edge weight 1.46 1.51 4.27 4.42

Model validation. We calibrate the following parameters for the metapopulation SEIR model on mobility
networks: (i) the transmission constant in POIs, ψ; (ii) the base transmission rate, βbase; and (iii) the ratio of
initial exposed people, p0. We use grid search to find the parameters with the smallest root mean square error
compared to the reported number of infected cases. We calibrate an SEIR model for every MSA independently.
We compare the predicted cases of our simulated SEIR model with the reported cases from New York Times
COVID-19 data. The root mean squared error of all the epochs is 295.17 averaged over eight mobility networks.
The error is within 3% compared to the overall infected population which is at the scale of 104. These results
reaffirm the finding of Chang et al. [5].

Data availability. The three weighted graphs are available in the following sources: Airport1, Adavogato2,
and Bitcoin3. The two weighted time-varying graphs are available in the following sources: Bitcoin-Alpha4

and Bitcoin-OTC5. We report the network statistics in Table 3. The mobility network data is freely available
to researchers, non-profit organizations, and governments through the SafeGraph COVID-19 Data Consortium.6

The construction of mobility networks requires the following data sources: (i) Mobility patterns from the Monthly
Pattern7 and Weekly Pattern datasets, 8 (ii) The geometry dataset,9 and (iii) The Open Census. Dataset10 The
New York Times COVID-19-data is publicly available online.11 The code for reproducing the experiments is
available in the link below.12

1http://opsahl.co.uk/tnet/datasets/openflights.txt
2https://downloads.skewed.de/mirror/konect.cc/files/download.tsv.advogato.tar.bz2
3http://snap.stanford.edu/data/soc-sign-bitcoinalpha.html
4https://snap.stanford.edu/data/soc-sign-bitcoinalpha.csv.gz
5https://snap.stanford.edu/data/soc-sign-bitcoinotc.csv.gz
6https://www.safegraph.com/covid-19-data-consortium
7https://docs.safegraph.com/docs/monthly-patterns
8https://docs.safegraph.com/docs/weekly-patterns
9https://docs.safegraph.com/docs/geometry-data

10https://docs.safegraph.com/docs/open-census-data
11https://github.com/nytimes/covid-19-data
12https://github.com/lidongyue12138/Optimization-Edge-Centrality

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited

http://opsahl.co.uk/tnet/datasets/openflights.txt
https://downloads.skewed.de/mirror/konect.cc/files/download.tsv.advogato.tar.bz2
http://snap.stanford.edu/data/soc-sign-bitcoinalpha.html
https://snap.stanford.edu/data/soc-sign-bitcoinalpha.csv.gz
https://snap.stanford.edu/data/soc-sign-bitcoinotc.csv.gz
https://www.safegraph.com/covid-19-data-consortium
https://docs.safegraph.com/docs/monthly-patterns
https://docs.safegraph.com/docs/weekly-patterns
https://docs.safegraph.com/docs/geometry-data
https://docs.safegraph.com/docs/open-census-data
https://github.com/nytimes/covid-19-data
https://github.com/lidongyue12138/Optimization-Edge-Centrality

	Introduction
	Preliminaries
	Spectral Optimization with Frank-Wolfe
	Edge centrality as gradient
	Global optimization via iterative greedy
	Optimization on time-varying networks

	Experiments
	Experimental setup
	Experimental results
	Ablation studies
	Runtime report

	Related Work
	Conclusion
	Proofs
	Epidemic Models
	Experiment Details

