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Abstract

We consider the problem of diffusion control via inter-
ventions that change network topologies. We study this
problem for general weighted networks and present an
iterative algorithm, Frank-Wolfe-EdgeCentrality, to re-
duce the spread of a diffusion process by shrinking the
network’s top singular values. Given an edge-weight
reduction budget, our algorithm identifies the near-
optimal edge-weight reduction strategy to minimize the
sum of the largest r eigenvalues of W⊤W , where W
is the network weight matrix. Our algorithm provably
converges to the optimum at a rate of O(t−1) after t
iterations; each iteration only requires a nearly-linear
runtime in the number of edges.

We perform a detailed empirical study of our algo-
rithm on a wide range of weighted networks. In partic-
ular, we apply our approach to reduce edge weights on
mobility networks (between points of interest and cen-
sus block groups), which have been used to model the
spread of COVID-19. In SEIR model simulations, our
algorithm reduces the number of infections by 25.70%
more than existing approaches, averaged over three
weighted graphs and eight mobility networks. Mean-
while, the largest singular value of the weight matrix
W decreases by 25.48% more than existing approaches
on these networks. An extension of our algorithm to
temporal mobility networks also shows an effective re-
duction in the number of infected nodes.

Keywords: Targeted Immunization, Edge Centrality,
Graph Algorithms, Epidemic Spreading.

1 Introduction

The problem of diffusion control has gained recent
interest in identifying non-pharmaceutical interventions
such as lockdown to slow the spread of the SARS-CoV-2
virus. For example, Chang et al. [3] and Chang et al. [4]
introduce mobility-based modeling to study the spread
of the COVID-19 pandemic. Their approach consists of
two major components.

We study network-based interventions to reduce the
number of infected nodes in general weighted and di-
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rected networks. Suppose there is an epidemic spread-
ing on the network. How can we slow down the spread
of the epidemic in the network, subject to reducing the
edge weights by a limited amount, due to budget con-
straints? For example, the weight of an edge from a
census block group to a place in a mobility network rep-
resents the amount of traffic between them. Reducing
the weight of this edge corresponds to mobility reduc-
tion.

The spreading rate of a diffusion process is closely
related to the spectral properties of a network. An
important result from the epidemics literature is that
the epidemic threshold–below which a diffusion process
will die out quickly–scales linearly with the largest (in
module) eigenvalue (denoted as λ1) of the adjacency
matrix of the network [2]. As Prakash et al. [19] proved,
this result generalizes to various epidemic models. Thus,
a natural strategy for slowing down a diffusion process
is to remove nodes or edges to reduce λ1 of a network’s
adjacency matrix. However, minimizing λ1 subject to
removing a fixed number of nodes or edges is NP-hard
via a reduction to the independent set problem [11,
7]. Therefore, various heuristics are proposed to solve
this problem in practice. For example, Chen et al.
[7] show that by choosing nodes with the highest node
centrality scores (i.e., a node’s value in the eigenvector
corresponding to the largest eigenvalue) in a greedy
approach, one can reduce the largest eigenvalue and
achieve notable reductions in the number of infected
nodes. Tong et al. [23] have likewise shown that
choosing edges with the highest edge centrality scores
(i.e., the product of the node centrality scores from both
endpoints of an edge) in a greedy algorithm is a scalable
and effective approach. Chen et al. [5] further quantified
the approximation ratio of these greedy approaches by
using techniques from submodular optimization. In
light of these works, one natural approach to solving the
intervention problem is minimizing the top eigenvalue(s)
using edge-weight reduction, and the following questions
arise. Does this approach perform well (e.g., compared
to greedy algorithms)? Can this problem be solved
efficiently in polynomial time? This work provides
affirmative answers to these questions by developing
an iterative algorithm that provably converges to the
optimum of the minimization problem on weighted
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Figure 1: Comparison of our Frank-Wolfe-EC algorithm, K-EdgeSelection [23], and edge-weighted and uniform
reduction [3] over eleven weighted graphs. Our approach reduces the number of infections and the largest singular
value more significantly than previous approaches on all networks. The number of infections is from simulating
an SEIR model over 50 runs.

networks. See Figure 1 for an illustration of our results.
We begin by showing that the edge centrality mea-

sures from Tong et al. [23] are equal to the gradient of
the largest eigenvalue λ1(W

⊤W ) (up to scaling), where
W is the network weight matrix. We validate that re-
ducing the edge weights of the highest edge centrality
scores effectively reduces the number of infected nodes
in a weighted network.

Then, we develop a new algorithm, Frank-Wolfe
Edge Centrality minimization, to minimize the sum
of the largest r eigenvalues of W⊤W , subject to an
edge-weight reduction budget. At every iteration, our
algorithm finds a descent direction that correlates the
least with the edge centrality scores, given their gradient
interpretation above. A naive approach to finding
the descent direction requires solving a linear program
(LP). Instead, we present a nearly-linear time algorithm
(in the number of edges) by characterizing the LP’s
optimum as a greedy selection of edges with the highest
edge centrality scores. Additionally, we prove that
Frank-Wolfe-EC converges to the global minimum at
a rate of O(t−1) after t iterations.

We evaluate our algorithm by simulating an epi-
demic model on publicly available weighted graphs and
mobility networks. First, on three weighted graphs, our
approach achieves on average 10.46% improvement over
baselines during SEIR model simulations. Meanwhile,
the largest singular value decreases by an average of
11.42% more than the baselines. Second, we apply
our approach to reduce edge weights on mobility net-
works. Our algorithm reduces the infected populations
by 30.17% and the largest singular value by 30.75%

more than prior approaches on average. Finally, we
extend our algorithm to tackle temporal networks by
allocating the weight-reduction budget proportionally
to a network’s largest singular value. We find that on
sequences of temporal mobility networks, this strategy
reduces infections by 39.82% more than other heuris-
tics.

2 Preliminaries

Problem setup. Given an epidemic spreading process
on a weighted graph, we are interested in designing
algorithms to reduce the number of infected nodes. Let
G = (V ,E) be a weighted and possibly directed graph.
Let V be the set of vertices and E be the set of edges.
We use W to denote a non-negative weight matrix over
the edges. LetWi,j be the (i, j)-th entry ofW . Suppose
there is an edge weight reduction budget B. How should
we allocate the budget across the graph?

To answer this question, we consider an eigen-
value optimization approach that has been used for un-
weighted graphs in prior works [2, 19, 23, 7]. The idea
behind eigenvalue optimization approaches is to modify
the weight matrix W so that its largest eigenvalue is
most reduced. We extend the eigenvalue minimization
approach to weighted networks as follows. We will state
a mathematical optimization formulation of this prob-
lem. Let λi(W ) be the i-th largest singular value of
W , for i from 1 to r. Notice that the square of λi(W ),
denoted as λ2i (M), is equal to the i-th largest eigen-
value of M⊤M . Thus, there is a one-to-one mapping
between the singular values of M and the eigenvalues
of M⊤M , and they can be deduced from each other.
Given a rank parameter r, we consider the following
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optimization problem:

fOPT ← min
M∈Rn×n

f(M) :=

r∑
k=1

λ2
k(M)(2.1)

s.t.
∑

(i,j)∈E

(
Wi,j −Mi,j

)
≤ B

0 ≤Mi,j ≤Wi,j , ∀(i, j) ∈ E,

Mi,j = 0, ∀(i, j) /∈ E.

After solving the above problem, we get a modified
weight matrix M , that will be the solution of our
intervention strategy. As a remark, our objective in
equation (2.1) generalizes the objective of Tong et al.
[23] in that we include the top-r eigenvalues, with r = 1
being a special case.

Example. As a motivating example, reducing the
weight of an edge between a group and a location in
mobility networks corresponds to restricting mobility.
A widely used model of epidemic spread is the SEIR
compartmental model. An SEIR model uses four com-
partments to capture a spreading process: Susceptible
(S), Exposed (E), Infected (I), and Recovered (R). Ev-
ery node must belong to one of the four states during the
process. A metapopulation SEIR model is introduced
in the mobility-based modeling approach of Chang et
al. [3]. The metapopulation SEIR model is launched
on mobility networks. Mobility networks are bipartite
graphs to model the traffic between population groups
and locations. One part of the graph includes census
block groups (CBGs), which involve a population of in-
dividuals in each group. The other part of the graph
includes points of interest (POIs), which map to loca-
tions. Since there is a population of individuals in each
CBG, one SEIR model is instantiated for each CBG.
One of their key findings is that fitting the metapop-
ulation dynamics on mobility traffic data results in a
surprisingly accurate prediction of the reported number
of infected cases.

In Figure 2, we show that reducing the largest
singular value of G indeed reduces the number of
infections during a SEIR diffusion process. We perform
the experiment on a weighted mobility network.

3 Optimization Algorithms and Convergence

We present a new algorithm to optimize problem (2.1)
efficiently. To motivate our approach, we start by
observing that the gradient of f(M) is equivalent to the
“edge centrality scores”. Then, we develop an iterative
algorithm with an inner loop that reduces edges with
the highest edge centrality. We prove that our algorithm
converges to the global optimum fOPT, with a nearly-
linear runtime in |E| per-iteration.
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Figure 2: The number of infections strongly correlates
with the largest singular value of the graph; for higher
values of the latter, more infections will occur. p is the
infection rate of the spreading process.

3.1 Edge centrality as gradient To motivate our
approach, we begin by reviewing the algorithm of Tong
et al. [23], which considers controlling network diffusion
by adding or removing edges. A central notion behind
their approach is edge centrality, defined as the product
of the eigenvector scores from both endpoints of an edge.
More precisely, let X be any matrix. Let u⃗1 and v⃗1 be
the left and right singular vector of X, corresponding
to λ1(X). Then, for any edge (i, j) ∈ E, the edge
centrality score of this edge is given by u⃗1(i) · v⃗1(j),
where u⃗1(i) denotes the i-th coordinate of u⃗1 and v⃗1(j)
denotes the j-th coordinate of v⃗1.

The edge-weight reduction can be viewed as a
“continuous relaxation” of edge removal since the weight
of an edge can be reduced by a fraction. Interestingly,
we show that the edge centrality scores are equal to
the gradient of the largest eigenvalue of W⊤W (up to
scaling), λ21(W ), over decreasing the edge weights. A
more general statement holds for a generalized notion
of edge centrality scores, including the largest-k singular
values of W .

Lemma 3.1. Assume that the singular values of X are
all distinct. Then, the partial derivative of λ21(X) w.r.t.
Xi,j satisfies

∂λ2
1(X)

∂Xi,j
= 2λ1(X) · u⃗1(i) · v⃗1(j).(3.2)

More generally, for any r ≥ 1, we have

∂
(∑r

k=1 λ
2
k(X)

)
∂Xi,j

= 2

r∑
k=1

λk(X) · u⃗k(i) · v⃗k(j).(3.3)

The proof of Lemma 3.1 is presented in Appendix A.
Given a weight matrix W of a network, we compute the
edge centrality scores via the best rank-r approximation
ofW as W̃r = UrDrV

⊤
r . More precisely, Dr is an r by r

square matrix, containing the largest r singular values
ofW ; Ur is an n by r matrix, containing the left singular
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Figure 3: Comparison of greedy selection and uniform edge-weight reduction on a mobility network. Top-K-EC is
more effective in reducing the infected proportion throughout the SEIR model simulation. Moreover, the CBGs
and the POIs in this network have a heavy-tailed degree distribution, which supports the intuition behind selecting
edges by their centrality scores.

vectors corresponding to Dr; V
⊤
r is an r by m matrix,

containing the right singular vectors corresponding to
Dr. For every edge (i, j) ∈ E, let W̃r(i, j) be the edge
centrality score of this edge.

We validate that removing edges via top edge
centrality scores effectively reduces infections. Figure
3 compares Top-K-EC (cf. Algorithm 1) to uniformly
reducing every edge’s weight by the same ratio. With
Top-K-EC, the largest singular value dropped by 57.7%
in (3a) and 96.8% in (3b). With uniform reduction, the
drop goes down to 1% and 20%, respectively.

3.2 Global optimization via iterative greedy
We now develop the Frank-Wolfe edge centrality mini-
mization algorithm, or Frank-Wolfe-EC, specified in Al-
gorithm 1. The high-level idea is iteratively applying a
greedy selection of edges with the highest edge central-
ity scores while recomputing the scores.

At every iteration t from 1 to T , let Mt ∈ Rn×m

be the currently modified weight matrix. Let ∇f(Mt)
be the gradient of f(Mt). The Frank-Wolfe algorithm
[8, 16] computes a descent direction Gt for Mt, by
minimizing the following matrix inner product

⟨∇f(Mt), Gt⟩ = Tr
[
∇f(Mt)

⊤Gt

]
,

subject to the same constraints as problem (2.1):

G⋆
t ← argmin

X
⟨X,∇f(Mt)⟩(3.4)

s.t.
∑

(i,j)∈E

(
Wi,j −Xi,j

)
≤ B

0 ≤ Xi,j ≤Wi,j , ∀(i, j) ∈ E,

Xi,j = 0, ∀(i, j) /∈ E.

The core of our approach is to show that the
optimal descent direction, G⋆

t , is given by a greedy
selection of edges based on their edge centrality scores.

This procedure, Top-K-EdgeCentrality, or Top-K-EC,

is specified as part of Algorithm 1. Let W̃
(t)
r be the

best rank-r approximation of Mt for every t. Let
(i1, j1), (i2, j2), . . . , (im, jm) be the edges in descending

order of their edge centrality scores W̃
(t)
r , where m =

|E| is the number of edges. Consider the first k edges
whose total weight exceeds the reduction budget B:

k−1∑
l=1

Wil,jl < B and

k∑
l=1

Wil,jl ≥ B.(3.5)

Then, the weight of the first k − 1 edges is reduced
to zero. The weight of the last edge decreases by∑k

l=1Wil,jl − B. The following result proves that the
above greedy selection yields an optimal solution of the
inner optimization problem (3.4).

Theorem 3.1. The optimal solution G⋆
t (cf. 3.4) is

equal to the output of Top-K-EdgeCentrality(W,B;Mt)
in Algorithm 1.

The proof can be found to Appendix A. After
finding the descent direction G⋆

t , the next step of the
Frank-Wolfe algorithm is setting a learning rate by
minimizing f

(
(1 − ηt)Mt + ηtGt

)
, for ηt in a range H

between 0 and 1. Then, we update the weight matrix
accordingly.

To recap, each iteration of Frank-Wolfe-EC com-
putes a truncated rank-r SVD of a sparse matrix with
at most m nonzeros and sorts an array of size m. The
former requires a runtime complexity of O(mr log(m))
(e.g., Theorem 1 of Musco and Musco [15]). The latter
can be achieved with runtime O(m log(m)). By com-
parison, the runtime complexity for solving a general
linear program (i.e., problem (3.4)) is at least quadratic
in the dimension of W .

Next, we examine the number of iterations that
our algorithm needs to converge to fOPT. A well-

Under submission



Algorithm 1 Frank-Wolfe EC Minimization

Input: A graph G = (V ,E) with weight matrix W ; Budget B.

Parameters: Rank r; Iterations T ; Range of learning rate H.

Output: A weight matrix M modified from W .
1: procedure Frank-Wolfe-EdgeCentrality(W,B;T,H)

2: Let M0 = W

3: for t = 0, 1, . . . , T − 1 do
4: G⋆

t = Top-k-EdgeCentrality(W,B;Mt)

5: Set ηt by minimizing f
(
(1− ηt)Mt + ηtG⋆

t

)
for ηt ∈ H

6: Mt+1 = (1− ηt)Mt + ηtG⋆
t

7: end for

8: if there is unused budget in MT then

9: B′ = B − sum(W −MT )
10: M⋆ = Top-k-EdgeCentrality(MT , B′;MT )

11: end if
12: return M⋆

13: end procedure

14: procedure Top-k-EdgeCentrality(W,B;M)

15: Let M̃r be the best rank-r approximation of M
16: Sort the edges in E by their edge centrality scores from

M̃r: let k be the number of edges obtained from equation 3.5

with weight matrix W
17: Reduce the first k − 1 edges’ weight to zero and the last

edge’s weight by the remaining budget

18: return the updated W
19: end procedure

established result (e.g., Jaggi [10]) is that for convex
minimization problems, the Frank-Wolfe algorithm will
converge to the global minimum under mild conditions.
In the following, we will show that the objective f(M) is
convex. Based on that, we show that our Frank-Wolfe-
EC algorithm will converge to the global minimum of
problem (2.1), at a rate of O(T−1) after T iterations.

Theorem 3.2. Let κ be the minimum of λr(Mt) −
λr+1(Mt) over t = 0, 1, . . . , T − 1. Assume that κ is
strictly positive. Then, the following holds for MT :

f(MT )− fOPT ≤
40

(∑
(i,j)∈E W 2

i,j

)
α2

T
,(3.6)

where α2 = κ−1
(
maxTt=1 λ1(Mt)

√
r
)
+r+C, for a fixed

value C > 0.

This result guarantees that our algorithm will con-
verge to global minimum solution under mild condi-
tions. See Appendix A for the proof. While the con-
stants α1α2 can be large as inherited from previous
guarantees of the Frank-Wolfe algorithm, we find that
the number of iterations T required for Frank-Wolfe-EC
to converge is less than 30 in all cases.

3.3 Optimization on time-varying networks
Our study has focused on mitigating the spread in a
static network. Another consideration is that network
typologies evolve over time. Therefore, an important

Algorithm 2 Frank-Wolfe for Time-Varying Networks

Input: A sequence of graphs with weight matrix W in s steps.
Parameters: Same as the static case.

Output: A sequence of matrices M modified from W.
1: procedure Frank-Wolfe-TimeVarying(W(t), B;T,H)

2: Let M0 = W
3: for t = 0, 1, . . . , T − 1 do

4: Gt = {G⋆(i)
t }si=1 = Top-k-TimeVarying(W, B;Mt)

5: Set ηt by minimizing f
(
(1−ηk)Mt+ηtGk

)
for ηk ∈ H

6: Mt+1 = {M(i)
t+1 = (1− ηt)M

(i)
t + ηtG

⋆(i)
t : 1 ≤ i ≤ s}

7: end for
8: if there is unused budget in MT then

9: B′ = B −
∑s

i=1 sum(W (i) −M
(i)
T )

10: M⋆ = Top-k-TimeVarying(MT , B′;MT )
11: end if

12: return M⋆

13: end procedure

14: procedure Top-k-TimeVarying(W, B;M)

15: Let M̃r be the best rank-r approximation of
∏s

i=1 M
(i)

16: Sort the edges in all of the s graphs by their edge centrality
scores (cf. 3.9): let k be the number of edges obtained from

equation 3.5 with weight matrix W (1), . . . ,W (s)

17: Reduce the first k − 1 edges’ weight to zero and the last
edge’s weight by the remaining budget

18: return the updated W
19: end procedure

question is how to tackle such temporal evolution. Next
we show how to extend our optimization algorithm to
time-varying networks.

Let W = {W (1),W (2), . . . ,W (s)} be the weight ma-
trix of a sequence of graphs. We define the weight
matrix that controls the epidemic spreading as W =∏s

i=1W
(i) and minimize the sum of top-r eigenval-

ues of W⊤W as in problem (2.1). Motivated by
Prakash et al. [20] which connect epidemic spreading
with time-varying networks, we consider an eigenvalue
minimization problem on time-varying networks. Let
M = {M (1),M (2), . . . ,M (s)} be a sequence of modified
weight matrices. We aim to find M that shrinks the
largest eigenvalue(s) of their product:

min
M

f
(
M

)
:=

r∑
k=1

λ2
k

( s∏
t=1

M (t)
)

(3.7)

s.t.

s∑
t=1

∑
(i,j)∈E(t)

(
W

(t)
i,j −M

(t)
i,j

)
≤ B

0 ≤M
(t)
i,j ≤W

(t)
i,j , ∀(i, j) ∈ E(t), t = 1, . . . , s,

M
(t)
i,j = 0, ∀(i, j) /∈ E(t), t = 1, . . . , s.

Above, E(t) represents the set of edges in the t-th graph
of the sequence. Following Lemma 3.1 and the chain
rule, we show that the gradient of the largest eigenvalue
ofW⊤W toW (t) is equal to W̃r multiplied with the rest
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of weight matrices in the sequence except W (t):

∂
(∑r

k=1 λ
2
k(W )

)
∂W (t)

=
∂
(∑r

k=1 λ
2
k(W )

)
∂W

∂W

∂W (t)
(3.8)

=2UrDrV
⊤
r

∏
i ̸=t

W (i)

=2W̃r

∏
i ̸=t

W (i),(3.9)

where W̃r = UrDrV
⊤
r is the best rank-r approximation

of W . The gradients can be treated as edge centrality
scores on time-varying networks. For any edge (i, j) ∈
E(t) in W (t), the edge centrality score for the edge is
defined as the (i, j)-th entry of W̃r

∏
i ̸=tW

(i) from (3.9).
Then, we can develop a similar optimization algorithm
on time-varying networks following the static case.
The complete procedure can be found in Algorithm
2. Similar to Theorem 3.2, one can then prove that
Algorithm 2 is guaranteed to converge to the optimum
solution of problem (3.7) at the rate of O(T−1) after T
iterations! We defer the details to Appendix A.

4 Experiments

We evaluate our proposed approaches on a range of mo-
bility networks and weighted graphs. Our experiments
seek to address the following questions: First, does our
proposed algorithm reduce the infections and the largest
singular values well compared to methods from prior
works? Second, what are the effects of each compo-
nent in our algorithm, e.g., setting the rank r, running
multiple iterations of greedy selection, and setting the
budget? We present positive results to answer these
three questions, validating the practical benefit of our
algorithm.

4.1 Experimental setup We follow the procedure
described within Chang et al. [3] to construct the
mobility networks. We briefly summarize the procedure
and defer a comprehensive discussion to their paper.
The construction uses the mobility patterns, geometry,
and population census datasets from the SafeGraph
platform. Additionally, we will use the reported cases
of COVID-19 infections from The New York Times
to calibrate the SEIR model. We describe the data
sources in Section B. We generate the mobility networks
based on monthly patterns from March 2, 2020, to
May 10, 2020. We report the statistics of the mobility
networks from each metropolitan statistical area (MSA)
in Table 1. Overall, the mobility patterns cover 25,341
CBGs with over 65 million people and 147,638 POIs.
The temporal mobility networks are constructed weekly
during the same period mentioned above, including ten
networks for every MSA.

Besides mobility networks, we consider three other
weighted networks: (i) An Airport traffic network of
airports in the world; (ii) A network of trust relation-
ships among users on Advogato; (iii) A network of trust
relationships among users on a Bitcoin platform. The
statistics of these three networks are listed in Table 2.

Baseline methods. The experiments for spreading on
a static network involve the following baseline methods:
(1) K-EdgeDeletion: Delete a set of edges with the
highest edge centrality scores according to the best
rank-1 approximation of W [23]. (2) Edge weighted
reduction: Reduce the weight of every edge by a
ratio that is proportional to its weight. (3) Uniform
reduction: Uniformly reduce the weight of every edge by
the same fraction. (4) Max occupancy capping: Reduce
the cumulative weights at each POI proportional to its
max occupancy. (5) Capping by POI category: Cap the
maximum occupancy of a particular category of POIs.
The last three baselines are adapted from Chang et al.
[3].

For the experiments on a sequence of temporal
networks, we will only use Algorithm 1 to modify
the network weight matrix while varying the budget
allocation scheme. We consider the following list of
allocation schemes: (1) First week only: Assign all
the edge-weight reduction budget to the first week
of the sequence. (2) Uniform allocation: Distribute
the budget uniformly among every network in the
sequence. (3) Exponential allocation: Distribute the
budget proportional to exp(−t), decaying exponentially
over time.

Implementation. In Algorithm 1, we search the rank
parameter r in [1, 50] and the number of iterations in
[5, 30]. For each result reported in Section 4, we search
the two hyper-parameters 50 times. For the range of
learning rate H, we use 30 values from the range of
[10−3, 10−1] as H. In each iteration of the algorithm, we
conduct a grid search over the learning rate range and
choose the learning rate ηt that leads to the smallest
object value f

(
(1− ηt)Mt + ηtG

⋆
t

)
. All the experiments

are conducted on an AMD 24-Core CPU machine.

4.2 Experimental results

• Results for reducing infection: Figure 1 com-
pares our algorithm to baseline intervention strate-
gies on three weighted graphs. Overall, we see
that Frank-Wolfe-EC reduces the number of in-
fected nodes by 10.46% more than baseline meth-
ods on average. Table 1 compares the total number
of infected populations using different intervention
strategies on eight networks. We note that Frank-
Wolfe-EC—our iterative optimization method—
outperforms other baselines by 30.17% on average
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Table 1: Top: Basic statistics for eight mobility networks constructed from SafeGraph data. Middle:
Comparison of the total number of infected populations (×103). Bottom: Comparison of the largest singular
value. We modify the edge weights using the strategy in each row. Results are averaged over 50 runs.

Graphs AT CH DA HO MI NY PH DC

Nodes 11,232 32,390 19,069 38,895 17,858 34,216 18,649 10,590
Edges 154,729 439,262 283,928 671,217 276,109 463,719 260,279 107,733
Avg. node weight 2,400 1,593 2,069 2,395 2,219 1,578 1,568 2,060
Avg. edge weight 5.258 4.659 4.921 4.951 4.833 4.749 4.864 4.848

Infected populations AT CH DA HO MI NY PH DC

No Intevention 48.4±3.1 1858.8±46.5 91.9±21.2 366.5±26.7 752.5±26.9 3146.5±21.4 492.5±20.7 41.1±2.2
Uniform Reduction 46.8±2.3 1762.0±64.3 84.7±11.1 312.1±26.3 671.3±23.7 2996.9±40.1 463.4±12.8 41.1±1.6
Weighted Reduction 43.2±2.7 782.5±86.9 66.1±3.2 194.6±18.5 43.4±12.6 1336.6±60.1 342.1±10.4 40.7±1.3
Max Occ. Capping 44.3±2.7 1741.1±65.3 82.3±8.6 315.3±33.3 675.5±26.5 2990.0±45.2 455.1±15.9 41.5±1.7
POI Category 46.1±3.2 1728.6±62.5 77.3±8.4 283.8±31.6 687.6±25.5 2950.2±38.4 458.3±17.6 41.0±1.4
K-EdgeDeletion 44.9±2.9 346.8±40.6 64.1±2.8 186.5±18.9 78.3±8.9 352.9±27.7 185.2±10.6 39.8±0.9
Top-k-EC 45.8±3.5 355.2±46.5 64.0±2.4 187.2±21.2 78.9±7.9 362.9±36.3 178.6±11.2 39.9±1.2
Ours 40.4±1.7 166.2±16.1 62.1±2.4 86.4±10.9 8.5±2.5 301.4±88.4 129.2±13.4 39.2±1.0

Largest singular value AT CH DA HO MI NY PH DC

No Intevention 5526.6 1296.2 2093.6 1467.7 555.7 2413.4 1203.2 1406.5
Uniform Reduction 5250.3 1231.4 1988.9 1394.3 527.9 2292.7 1143.0 1336.2
Weighted Reduction 1254.2 302.6 564.7 420.5 213.0 481.8 374.5 365.9
Max Occ. Capping. 5250.3 1231.4 1988.9 1394.3 527.9 2292.7 1143.0 1336.2
POI Category 5526.3 1295.8 2073.7 1467.6 555.6 2270.0 1202.8 1375.4
K-EdgeDeletion 1565.2 257.9 417.2 447.9 216.7 355.9 282.7 227.2
Top-k-EC 1565.2 257.9 417.1 447.9 216.7 355.9 282.7 226.8
Ours 1191.2 125.9 308.4 235.6 169.5 197.3 190.1 188.1

and up to 80.36%. Additionally, we observe that
the trend is consistent with Table 1 during the entire
spreading process.

• Drop in the largest singular value: Figure 1
illustrates the largest singular value of the modified
weight matrix of the three weighted graphs. Frank-
Wolfe-EC reduces the largest singular value more
than baselines by 11.42% on average. Additionally,
Table 1 reports the largest singular value of networks
modified by each edge-weight reduction strategy on
mobility networks. Frank-Wolfe-EC is 30.75%
more effective than the best baseline on average.

• Results for time-varying networks: We find that
allocating the budget to every network proportional
to their largest singular value outperforms all the
other allocations. In particular, the number of in-
fected populations is smaller by 39.82% averaged
over both Chicago and New York mobility networks.

4.3 Detailed analysis

• Runtime report: Across all eleven graphs, our ap-
proach converges within 30 iterations (or 17 on aver-
age). Each iteration requires an SVD step that takes
less than 3 seconds. The other steps in each itera-
tion requires less than 2.7 seconds. For larger graph
instances, we run our method on seven graphs with
the number of edges included: com-Orkut (117M),
com-LiveJournal (34M), wiki-topcats (28M), web-
BerkStan (7.6M), web-Google (5.1M), web-Stanford

(2.3M), and web-NotreDame (1.4M) from the SNAP
datasets. Figure 4 reports the runtime for one itera-
tion of our algorithm. Notice that the runtime scales
are nearly-linear with the number of edges. For exam-
ple, our algorithm takes 4943 seconds on the largest
graph with 117 million edges and 3 million nodes.
These results show that our algorithm runs efficiently
on large-scale graphs.

• Benefit of choosing ranks: Recall that our algo-
rithm requires specifying rank r–the number of top
singular values–in Equation 2.1. We hypothesize that
varying the rank r would lead to different intervention
results. We ablate the performance of our algorithm
by using different r in a range of [1, 50]. The results
show that the performance of the best choice r out-
performs using r = 1 by 40.27% averaged over all
networks. This result justifies our formulation of the
network intervention problem as an optimization for
the sum of largest-r singular values instead of only
the largest single value.

• Benefit of being iterative: The greedy selection
algorithm Top-k-EC can be viewed as a special case
of Frank-Wolfe-EC with T = 1. Notice that the
iterative approach is necessary to get the observed
empirical performance. In Table 1, Frank-Wolfe-
EC outperforms Top-k-EC by 31.41% on average,
and the largest singular value is reduced by 33.09%
more in Table 1.
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Figure 4: Runtime of Frank-Wolfe-EC in log-log scale
for one iteration. The number of edges ranges from 104

to 108 and the number of nodes ranges from 103 to 106.

• Results with different budgets: We have also
observed similar results by varying the budget for
mobility reduction. We vary the budget from 1%
to 20% using the New York mobility network. We
find that our algorithm outperforms the baseline
methods consistently using different budget levels,
similarly for the largest singular value. Interestingly,
when the level of budget is small (e.g., 1%), Frank-
Wolfe-EC reduces the largest singular value more
significantly than baseline methods.

5 Discussion and Related Work

There is an extensive body of work studying diffusion
control on networks. Besides epidemic spreading, net-
work diffusion is also widely studied in social and in-
formation networks [14, 9]. We summarize the most
relevant research to ours while referring the reader to
Pastor-Satorras et al. [18]’s survey for references. A
key result in the epidemics literature is that the largest
eigenvalue of the adjacency matrix (a.k.a. the spec-
tral radius, denoted as λ1) characterizes the epidemic
threshold for more than 25 propagation models [19].

An important implication of this result is that the
epidemic dies out if λ1 decreases, and this is the ba-
sis of many works on epidemic control [24, 13, 6]. Be-
cause eigen-optimization problems via edge additions
or deletions are NP-hard [23, 12], approximation algo-
rithms are used for diffusion control. A key approach
is a greedy algorithm based on some notion of central-
ity information in the network [17]. There is a connec-
tion between this problem and submodular optimiza-
tion, leading to provable approximation ratios for the
greedy algorithm [21, 5].

Besides, there is a line of work studying diffusion
control under the name of the Firefighter problem in
approximation algorithms [1]. Finally, there are studies
on the design of vaccine distribution for pandemic
control [26, 22]. These works and their analysis do not

lead to direct bounds for weighted networks, which is
the focus of our setting.

Besides SEIR compartmental models, there are
other ways to model network spreading processes. The
critical algorithmic insight of our work is to strategically
restrict mobility using spectral properties of a network.
While our study focuses on the SEIR model and applica-
tions to mobility-based modeling, it is conceivable that
our algorithmic insights might apply to different epi-
demic models and different data-driven modeling of the
pandemic. For example, an interesting research ques-
tion is to examine our approach with different epidemic
models such as SIS and SIR. Besides, another interesting
question is to study node deletion as the intervention.
In the context of mobility networks, reducing the weight
of a node means reducing a fraction of the node’s mobil-
ity. Lastly, it is conceivable that one can combine our
approach with existing techniques to better deal with
temporal dynamics [20]. These questions are left for
future work.

6 Conclusion and Future Work

We studied the problem of controlling the diffusion
of an epidemic on weighted networks via reducing
edge weights. This problem is motivated by recent
studies of mobility-based modeling for the COVID-19.
We introduced a constrained optimization problem to
reduce edge weights that minimize the network’s largest
singular values. We designed an iterative procedure for
finding the global minimum of the above optimization
problem. Our algorithm is guaranteed to converge
to the global optimum. Additionally, we theoretically
proved and empirically observed that each iteration
only requires a nearly-linear runtime in the size of the
network. Our experiments demonstrated the superiority
of our approaches. Our work highlights the existence of
spectral properties in mobility networks and uses them
to design practical intervention algorithms.

We remark that implementing this scheme requires
knowing the network in the sequence. When such
information is not available, one needs first to estimate
this information. This is left for future work.
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A Proofs

Proof of Lemma 3.1. Consider a singular value λk of X, for any k. Let u⃗k and v⃗k be the left and right singular

vectors of X corresponding to λk, respectively. By the chain rule, it suffices to show that ∂λk(X)
∂Xi,j

= u⃗k(i) · v⃗k(j).
First, we have u⃗⊤k X = λkv⃗

⊤
k . We differentiate over X on both sides of the above equation:

d(u⃗⊤k )X + u⃗⊤k d(X) = d(λk)v⃗
⊤
k + λk d(v⃗

⊤
k ).(A.1)

Since v⃗k is a unit length vector,

d(∥v⃗k∥2) = 2⟨v⃗k,d(v⃗k)⟩ = 2d(v⃗⊤k )v⃗k = 0.(A.2)

Thus, by multiplying both sides of equation (A.1) with v⃗k, we get

d(u⃗⊤k )Xv⃗k + u⃗⊤k d(X)v⃗k = d(λk)v⃗
⊤
k v⃗k + λk d(v⃗

⊤
k )v⃗k,(A.3)

which is equal to d(λk) since equation (A.2) holds and vk is a unit length vector. Looking at equation (A.3), we
observe

d(u⃗⊤k )Xv⃗k = d(u⃗⊤k )λku⃗k = λk d(u⃗
⊤
k )u⃗k = 0,(A.4)

where the last step follows similarly to equation (A.2), since u⃗k is also a unit length vector. In summary, we have
shown u⃗⊤k d(X)v⃗k = d(λk). This implies that the derivative of λk over Xi,j is equal to u⃗k(i) · v⃗k(j). Since this
holds for any k, we thus conclude that equations (3.2) and (3.3) are both true. □

Proof of Theorem 3.1. By Lemma 3.1, for every edge (i, j) ∈ E, the gradient of f(Mt) over this edge is given
by the edge centrality scores. Since Xi,j = 0 for any (i, j) /∈ E, the optimization objective is:

⟨X,∇f(M)⟩ =
∑

(i,j)∈E

2Xi,j

( r∑
k=1

λk · u⃗k(i) · v⃗k(j)
)
.(A.5)

Above, each variable Xi,j is multiplied precisely by the edge centrality of the edge (i, j) (cf. line (15)). Consider
minimizing the equivalent objective (A.5) with the constrains of Problem (3.4). The minimizer, G⋆

t , is achieved
by reducing the weight of the edges with the highest edge centrality to zero until the budget B gets exhausted.
This is precisely the procedure of Top-K-EC from lines (15)-(17). Thus, we have proved this result. □

Proof of Theorem 3.2. We complete the convergence analysis of our algorithm. First, we show that the
objective function f(M) is convex in M . Second, we invoke the result of Jaggi [10], specifically Lemma 7 and
Theorem 1, which show that as long as the gradient ∇f(M) is Lipschitz-continuous and the constraint set has
bounded diameter, the Frank-Wolfe algorithm will converge to the optimum at a rate of O( 1t ) after t iterations.

We first show that the sum of top singular values g(M) =
∑r

k=1 λk(M) is convex. With the variational
characterization of singular values, g(M) is equal to

g(M) = max
U⊤U=V ⊤V=Idr: U∈Rn×r,V ∈Rm×r

⟨UV ⊤,M⟩.(A.6)

Thus, for any n by m matrix M1,M2, and any α ∈ [0, 1], let Ũ and Ṽ be the maximizer of the above for
f
(
αM1 + (1− α)M2

)
. Therefore,

g
(
αM1 + (1− α)M2

)
= ⟨Ũ Ṽ ⊤, αM1 + (1− α)M2⟩
≤ α⟨Ũ Ṽ ⊤,M1⟩+ (1− α)⟨Ũ Ṽ ⊤,M2⟩
≤ αg(M1) + (1− α)g(M2),

which implies that g(M) is convex. Next, we show that f(M) is convex. For any α ∈ [0, 1],

f(αM1 + (1− α)M2) = g
(
(αM1 + (1− α)M2)

T (αM1 + (1− α)M2)
)

≤ α2g(M⊤
1 M1) + (1− α)2g(M⊤

2 M2) + 2α(1− α)g(M⊤
1 M2).
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Let Ũ and Ṽ be the maximizer of (A.6) for M⊤
1 M2. We have

2g(M⊤
1 M2) = 2⟨Ũ Ṽ ⊤,M⊤

1 M2⟩ = 2⟨M1Ũ ,M2Ṽ ⟩

≤
∥∥∥M1Ũ

∥∥∥2
F
+
∥∥∥M2Ṽ

∥∥∥2
F
= ⟨M⊤

1 M1, Ũ Ũ
⊤⟩+ ⟨M⊤

2 M2, Ṽ Ṽ
⊤⟩

≤g(M⊤
1 M1) + g(M⊤

2 M2).

Therefore, f(αM1 + (1−α)M2) is less than α · g(M⊤
1 M1) = α · f(M1) plus (1−α) · g(M⊤

2 M2) = (1−α) · f(M2).
Second, we verify that ∇f(M) is α2 Lipschitz continuous in the Frobenius norm. The proof is based on

matrix perturbation bounds. Let M̃ = M + E be a perturbation of M . Let Mr = UrDrV
⊤
r be the top-r SVD

of M . Let µ1 be the largest singular value of M . Let M̃r = ŨrD̃rṼ
⊤
r be the top-r SVD of M̃ . First, consider

∥E∥2 ≤ κ/2. By matrix perturbation bounds on the truncated SVD of a matrix (e.g., Theorem 1 of Vu et al.
[25]; the condition is satisfied since κ is the spectral gap between the r-th and (r+ 1)-th largest singular values),
we have

∥Mr − M̃r∥2F ≤ 2∥E∥2
F
+

4λ21
κ2

∥E∥2
F
+ C∥E∥2

F
.

When ∥E∥2 ≥ κ/2, notice that

∥Mr − M̃r∥2F = ∥UrDrV
⊤
r − ŨrD̃rṼ

⊤
r ∥2

F

≤ 2∥Dr∥2F + 2∥D̃r∥2F
≤ 2rλ21 + 2r(λ1 + ∥E∥2)2,

which is at most 2r(3λ21 + 2∥E∥22). The step above uses the Weyl’s Theorem that ∥Dr − D̃r∥2 ≤ ∥E∥2. Taken
together, we conclude that ∇f(M) must be√

max
(
2 +

4λ21
κ2

+ C,
24r · λ21
κ2

+ 4r
)

Lipschitz continuous. Lastly, the diameter of the constraint set is at most
√∑

(i,j)∈E W
2
i,j , since for every

(i, j) ∈ E, the search space is bounded between 0 and Wi,j . Taken together, we have proved that: f(M) is

convex, ∇f(M) is α2 Lipschitz continuous, and the diameter of the constrained space of problem (2.1) is
√
α1/8.

Using Lemma 7 and Theorem 1 of Jaggi [10], the proof is complete. □

B Additional Experimental Setup

At every time t,

• S(t) denotes the set of susceptible nodes at time t. A node may get exposed if its incoming neighbors are
infectious. The probability depends on the edge weights and the virus transmission rate.

• E(t) denotes the nodes who have been exposed to the virus but who are not infectious at time t. In expectation,
a node remains exposed for δE periods.

• I(t) denotes the nodes who are infectious at time t. Each node remains infectious for δI periods in expectation.

• R(t) denotes the nodes who have recovered at time t.

Data availability. The mobility data is freely available to researchers, non-profit organizations, and governments
through the SafeGraph COVID-19 Data Consortium.1 The New York Times COVID-19-data is publicly available
online.2 Links to the other weighted networks are included in the references.

1https://www.safegraph.com/covid-19-data-consortium
2https://github.com/nytimes/covid-19-data
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Table 2: Basic statistics for three weighted graphs.

Airport Advogato Bitcoin

Number of Nodes 7,977 6,541 3,783
Number of Edges 30,501 51,127 24,186

Average edge weight 1.45 0.83 1.46

The construction of mobility networks requires the following data sources: (i) Mobility patterns from the
Monthly Pattern3 and Weekly Pattern datasets 4. (ii) The geometry dataset5, and (iii) The Open Census
Dataset6. We also consider three weighted networks in the experiments: Airport7, Adavogato8, and Bitcoin9.

Simulation setup. For the experiments concerning mobility networks, we follow the procedures of Chang et al.
[3] to simulate a metapopulation SEIR model in each network. We simulate 100 epochs to be consistent with the
simulation of Chang et al. [3]. The results are consistent throughout the simulation. We compare the Frank-
Wolfe-EC algorithm with baseline methods using an edge-weight reduction budget as 5% of the total edge
weights. Results of using other budget amounts are consistent.

We simulate an SEIR model on each graph for the other weighted networks. To avoid infecting all the graph
nodes, we simulate for 50 epochs. We use a slightly higher edge-weight reduction budget as 20% of the total edge
weights because the average edge weight in these three graphs is smaller than the mobility networks.

For the temporal mobility networks experiments, we simulate the metapopulation SEIR model on a sequence
of ten networks for 70 epochs or seven epochs for every network. We set the edge-weight reduction budget as
5% of the total edge weights of the sequence and allocate the budget to each network by allocation strategies
described above.

We calibrate the parameters of the SEIR model following the method presented in Chang et al. [3]. Specifically,
we calibrate the following parameters: (i) the transmission constant in POIs, ψ; (ii) the base transmission rate,
βbase; and (iii) the ratio of initial exposed people, p0. We use grid search to find the parameters with the smallest
root mean square error compared to the reported number of infected cases. We calibrate an SEIR model for every
MSA independently. For the weighted graphs, we use a transmission rate βBase = 0.05 and a initial exposed ratio
p0 = 0.01.

C Model validation

We compare the predicted cases of our simulated SEIR model with the reported cases from New York Times
COVID-19 data. The root mean squared error of all the epochs is 295.17 averaged over eight mobility networks.
The error is within 3% compared to the overall infected population which is at the scale of 104. These results
reaffirm the finding of Chang et al. [3].

D Discussion and Future work

We mention two questions for future work. First, although we demonstrated that choosing the rank r larger than
one yields superior empirical performance, theoretically justifying the reduction of f(M) to reducing epidemic
threading is still lacking, and we leave it for future work. Second, while our algorithm achieved strong empirical
performance on mobility networks, theoretically analyzing it within the setting of mobility-based modeling
remains an interesting question. In particular, we are not aware of any result on the epidemic threshold of
the metapopulation SEIR model. More broadly, we hope our work inspires further algorithmic and theoretical
studies on epidemic spreads, which could in turn contribute to the ongoing discussion of pandemic prevention.

3https://docs.safegraph.com/docs/monthly-patterns
4https://docs.safegraph.com/docs/weekly-patterns
5https://docs.safegraph.com/docs/geometry-data
6https://docs.safegraph.com/docs/open-census-data
7http://opsahl.co.uk/tnet/datasets/openflights.txt
8https://downloads.skewed.de/mirror/konect.cc/files/download.tsv.advogato.tar.bz2
9http://snap.stanford.edu/data/soc-sign-bitcoinalpha.html
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