Introduction to Data
Augmentation

Hongyang R. Zhang

Lecture 10




Lecture plan

» An overview of data augmentation
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Why data augmentation

Neural net training, getting labeled data, and data augmentation

BIG DATA & DEEP LEARNING Training deep neural nets requires lots of labeled data!
¢ Deep.
Leaming M Bascline [ AutoAugment Population Based Augmentation
o 4
0
c
@© 3
g Most Learning e
-g Algorithms = 2
o 5
o 5]
@ 1
'_
0
) WRN-28-10 S-S (26 S-S (26 S-S (26 PyramidNet

Amount of Data 2x96D 2x96D) 2x112D)

» In image classification, data augmentation has become standard practice |e.o. ResNet
and follow-up works, Ratner et al’l7, Cubuk et al’1§]

» In text classification, reinforcement learning, meta learning etc, data augmentation is an
emerging approach!

Figure credit: https://github.com/aleju/imgaug, https://towardsdatascience.com/7-practical-deep-learning-tips-97a9£514100e
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How data augmentation works?

A list of image transformations &Y q (A w

nb_iterations=1 p=0 sigma=0.25
Original Cutout Invert Blur
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Data augmentation in text classification
»Textual data augmentation example (cf. nlpaug(@github)

Sentence

Original | The quick brown fox jumps over the lazy dog

Synonym (PPDB) | The quick brown fox climbs over the lazy dog

Word Embeddings (word2vec) | The easy brown fox jumps over the lazy dog

Contextual Word Embeddings (BERT) | Little quick brown fox jumps over the lazy dog

PPDB + word2vec + BERT | Little easy brown fox climbs over the lazy dog

» Other examples:

» A concatenation of cased and lowercased training data [ner and pos when
nothing is capitalized, Mayhew et al’19]

>R€placing fragments with other fragments that appear in at least one similar
environment |Andreas 20)]

Algorithmic and Statistical Frontiers in Deep Learning



Major challenges in data augmentation

> Some transformations may not help

» Depends on the dataset and the prediction task
» With composition (of multiple transformations), the search space grows
polynomially

» Existing work in this direction
» Rl.-based search
» Random sampling
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RL.-based search

RL-based search
» Discriminator: is the generated image real or augmented?
» Generator: what kind of images are difficult to recognize by the

Generator - Discriminator
(LSTM) real or augmented?
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TANDA [Ratner et al.'17]
AutoAugment [Cubuk et al.'18]




Random sampling

Random sampling
» Generate n new images, randomly sample one for training
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RandAugment [Cubuk et al.'19]




Bayesian optimization

>Imagine that the parameters follow a Gaussian distribution. Can we learn
the parameters?

> Based on a well-known connection between RL. and multi-armed bandit

|Gaussian Process Optimization in the Bandit Setting: No Regret and
Experimental Design, Srinivas et al’10]
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Adversarial training

» Simultaneously optimize a target network for prediction and an
(augmentation) policy network
» Policy network: generate adversarial policies that increase target network’s loss

»Target network: learn from policy network’s generated examples
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Generalization effects of data
augmentation

A theoretical framework
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A broad context

Motivating question: a principled understanding of these
transformations and search techniques seems mostly unexplored

Data augmentation allows the model to generalize to unseen data better
[SK*19]

This work

Goal: a theoretical framework that precisely analyzes the benefit of

data augmentation

> Algorithm: biased sampling that selects useful transformations more
etticiently
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Theoretical framework

Linear transtormations: a large family of image transtormations

Label-invariant Label-mixing Composition of
transformations transformations transformations
Rotation Mixup [Zhang et al.'17/] Rotation @ Mixup
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Problem formulation

> Label-invariant (base) transformation F € R?*? and a training sample
(x, y)
» Transformed sample: (Fx,y)

» Label-mixing transformation mixup |[Zhang et al. ‘17| and two training
samples (X1, Y1), (X2, ¥2)
> Transformed sample: (@ - x1 +(1 —a) " xp, a-y1+ (1 —a) - y3)

» Composition of two label-invariant transformations F; € R4%4 F, €
Rdxd

» Transformed sample: (F1Fx, y)

Algorithmic and Statistical Frontiers in Deep Learning



Problem formulation (cont’d)

»Setting: over-parametrized linear regression

»Training data: feature vectors X = [x4 € RV, x, € RP, ..., x,, € RP],
labels Y = X + &.

» Assumption: # parameters p > n #samples

»Ridge estimator: add an ¥ regularization w/ parameter 4

L(B) = xB |, +4-[|Bl;

» Question: how does adding transformed samples impact the ridge
estimator’s generalization error?
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Provable improvement

» Question: how does the estimation error of the ridge estimator (X, Y)

compare to the augmented ridge estimator 44,9 = B(Xaug Y aug)?

» Result 1: For one sample x and a label-invariant transformation F, adding
the transformed sample reduces the estimation error of the ridge estimator

(BT PLFx)’
n

e(B) — e(Baug) =

» Intuition: The transformed sample adds a new direction outside the span
of the training data, which does not cover the entire space because #
samples < dimension.

Notation: P§ denotes the projection to the orthogonal subspace of X

Algorithmic and Statistical Frontiers in Deep Learning




Provable improvement

» Question: how does the estimation error of the ridge estimator (X, Y)
compare to the augmented ridge estimator B4y, = B(Xaug, Y aug)?

» Result 2: For two random samples X1, X3, adding the mixup samples
x™9 = axy + (1 — a)x, reduces estimation error

A7|IXBII?
n?

e(B) — e(Baug) =

> Intuition: Regularization via shrinking the training data

.

Using E[x®9x9 | = (1 - 2a)? ==
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Less than one!
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Provable improvement

» Question: how does the estimation error of the ridge estimator (X, Y)
compare to the augmented ridge estimator B4y, = B(Xaug, Y aug)?

»Result 3: For a sample x and two label-invatiant transformations, adding
the transformed sample reduces estimation error

(ﬁTP)l(F1F2x)2
n

e(B) — e(Baug) =

» Intuition: Further expands search space
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Bias and variance metrics

» Question: How do we measure generalization effects in a practical
scenarior

»Idea: Separate the randomness from the deterministic part. Train an
ensemble of models.

Vi V2 V3 Vi Vs majority true
+ - -+ 4 + +

»Error score: measure acc. of majority label. Ex. correct

» Instability score: measure % of mislabels compared to majority label.
Ex. 40%

Algorithmic and Statistical Frontiers in Deep Learning



Validation on MNIST

e Observation 1: [.abel-invariant transformations indeed reduce the error
score!

Avg. Error  Instab.
Acc. Score

Baseline 98.08% 0.95%
Cutout 98.31% 0.86%
RandCrop 98.61% 0.88%
Rotation 98.65% 0.77%
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Validation on MNIST

* Observation 2: Mixup reduces the instability score as we increase the
fraction of mixing same-class digits

MNIST
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Validation on MNIST

* Observation 3: On MNIST, translations do not add new information on
top of rotate, cutout, and random cropping

Random
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Uncertainty-based sampling

Step 1: Users provide Step 2: Randomly sample K Step 3: Model selects TFs with the
transformation functions transformation functions highest loss during training

J)ect the “information gain”
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conceptually similar to Adversarial AutoAugment |[ZW2Z 2, ICLLR’20| but simpler
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Experimental results

» Evaluation on multiple image classification datasets and models

»Highlight 1: 79% accuracy on ImageNet using ResNet-50, comparable
to SoTA with less computation

»Highlight 2: By increasing # augmented samples, accuracy 85% on
CIFAR-100 using WideResNet
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Ablation studies
>Why 1t works?

» Our method learns and reduces the frequencies of the better performing
transformations during training!
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Model: PyramidNet + ShakeDrop Composition of transformations

Dataset; CIFAR-10
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Summary

» Takeaway: We provide a theoretical framework to understand data
augmentation better, and a new augmentation sampling algorithm.

»Theory & Intuition: geometric intuition formalized via the span of
training data.

» Algorithm: Uncertainty-based augmentation sampling by inspecting
how large the losses of the transformed samples are!

»Experiments: SOTA quality on several image classification benchmarks.
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Further reading
> Arxiv: 2005.00695

»Blog post: http:/ /hazyresearch.stanford.edu/data-aug-part-3

» Code release: http://github.com/SenWu/dauphin

Algorithmic and Statistical Frontiers in Deep Learning



http://hazyresearch.stanford.edu/data-aug-part-3
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Data augmentation in semi-
supervised learning




Combining unlabeled and labeled data

* Motivation: training neural networks requires lots of labeled data

* Semi-supervised learning: combine both labeled and unlabeled data
together

* Examples: imagine having both labeled and unlabeled 1mages

* Approaches:
* Label propagation: assign labels to previously unlabeled data points

* Self-training: first a supervised learning algorithm is trained based on the labeled
data. This classifier is then applied to the unlabeled data to generate more /abels

* Intuition: unlabeled data helps by estimating the features more
accurately

Algorithmic and Statistical Frontiers in Deep Learning



Data augmentation

* Data augmentation 1s naturally suited for semi-supervised learning

* Consistency regularization is a method for using data augmentation in
semi-supervised learning [Unsupervised data augmentation for
consistency training, Xie et al’20]

* Encourages the labels of the original data x and the augmented data X to
be similar:
[ Final Loss j 2

AE;py (2)Bing(ale) [CE (Pg(y [ 2)lIPe(y | £))] /

Supervised ' I
Cross-entropy Loss Augmentations I .
- TF-IDF word
replacement
Po(¥ | %) ) /
X
Labeled Data Unlabeled Data
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Data augmentation in text
classification

Algorithmic and Statistical Frontiers in Deep Learning



Composition of fragments

* Good-enough compositional data augmentation, Andreas’20: provide a
compositional bias in conditional and unconditional sequence models

* Motivation: we often want models to generalize beyond training dataset
* Examples:

(1) a. The cat sang.

(2) a. The wug daxed.
b. The wug sang. b. * The sang daxed.
c. The cat daxed.
(a) (©)
She picks the wug up in Fresno. =~ Pat picks cats up.
* Approach

2 Vv
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She puts the wug down in Tempe. =¥ = Pat puts cats down.

(b)

(d)
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Recap

» An overview of data augmentation
» Motivation
»How data augmentation works
» Major challenges

> Previous work

» A theoretical framework that precisely analyzes the generalization
properties of data augmentation

> Three categories of linear transformations in an over—parametrized setting

» Uncertainty-based sampling
»Research trends

»Semi-supervised learning: consistency regularization

»Text classification: composition of sentence fragments
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