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Lecture plan
ØAn overview of  data augmentation
ØA theoretical framework that precisely analyzes the generalization

properties of  data augmentation
ØResearch trends

ØSemi-supervised learning
ØText classification
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Why data augmentation

Algorithmic and Statistical Frontiers in Deep Learning

Neural net training, getting labeled data, and data augmentation

Training deep neural nets requires lots of  labeled data!

Ø In image classification, data augmentation has become standard practice [e.g. ResNet
and follow-up works, Ratner et al’17, Cubuk et al’18]

Ø In text classification, reinforcement learning, meta learning etc, data augmentation is an 
emerging approach!

Figure credit: https://github.com/aleju/imgaug, https://towardsdatascience.com/7-practical-deep-learning-tips-97a9f514100e
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How data augmentation works?
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Original Cutout Invert Blur

SnowContrast Pooling Canny

A list of  image transformations

“Quokka”

Neural net training with automatic labeled data generation
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Data augmentation in text classification
ØTextual data augmentation example (cf. nlpaug@github)

ØOther examples:
ØA concatenation of  cased and lowercased training data [ner and pos when 

nothing is capitalized, Mayhew et al’19]
ØReplacing fragments with other fragments that appear in at least one similar 

environment [Andreas 20]

Algorithmic and Statistical Frontiers in Deep Learning
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Major challenges in data augmentation
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Ø Some transformations may not help
Ø Depends on the dataset and the prediction task

Ø With composition (of  multiple transformations), the search space grows 
polynomially

Ø Existing work in this direction
Ø RL-based search
Ø Random sampling
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RL-based search

TANDA [Ratner et al.'17]
AutoAugment [Cubuk et al.'18]

RL-based search
Ø Discriminator: is the generated image real or augmented?
Ø Generator: what kind of  images are difficult to recognize by the 

discriminator?
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Random sampling
Random sampling
Ø Generate n new images, randomly sample one for training

RandAugment [Cubuk et al.'19]
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Bayesian optimization
ØImagine that the parameters follow a Gaussian distribution. Can we learn 

the parameters?
ØBased on a well-known connection between RL and multi-armed bandit 

[Gaussian Process Optimization in the Bandit Setting: No Regret and 
Experimental Design, Srinivas et al’10]

Fast AutoAugment
[Lim et al.'19]
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Adversarial training
ØSimultaneously optimize a target network for prediction and an 

(augmentation) policy network
ØPolicy network: generate adversarial policies that increase target network’s loss
ØTarget network: learn from policy network’s generated examples

Adversarial AutoAugment
[Zhang et al.’20]
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Generalization effects of  data 
augmentation

A theoretical framework

Algorithmic and Statistical Frontiers in Deep Learning
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A broad context
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Ø This work
Ø Goal: a theoretical framework that precisely analyzes the benefit of  

data augmentation
Ø Algorithm: biased sampling that selects useful transformations more 

efficiently

Ø Motivating question: a principled understanding of  these 
transformations and search techniques seems mostly unexplored

Ø Data augmentation allows the model to generalize to unseen data better 
[SK’19]
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Theoretical framework
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Linear transformations: a large family of  image transformations

Label-invariant
transformations

Label-mixing
transformations

“Quokka” “Quokka”

Rotation Mixup [Zhang et al.'17]

“Quokka”

“Quokka”0.6
“Dog”   0.4

“Dog”

Composition of
transformations

Rotation @ Mixup

“Quokka”

“Dog”

“Quokka”

“Quokka”0.6
“Dog”   0.4

“Quokka” “Quokka”

Horizontal Flip
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Problem formulation
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Ø Label-invariant (base) transformation 𝑭 ∈ ℝ𝒅×𝒅 and a training sample 
(𝒙, 𝒚)
Ø Transformed sample: (𝑭𝒙, 𝒚)

Ø Label-mixing transformation mixup [Zhang et al. ‘17] and two training 
samples 𝒙𝟏, 𝒚𝟏 , (𝒙𝟐, 𝒚𝟐)
Ø Transformed sample: (𝜶 ⋅ 𝒙𝟏 + 𝟏 − 𝜶 ⋅ 𝒙𝟐, 𝜶 ⋅ 𝒚𝟏 + 𝟏 − 𝜶 ⋅ 𝒚𝟐)

Ø Composition of  two label-invariant transformations 𝑭𝟏 ∈ ℝ𝒅×𝒅, 𝑭𝟐 ∈
ℝ𝒅×𝒅
Ø Transformed sample: (𝑭𝟏𝑭𝟐𝒙, 𝒚)
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Problem formulation (cont’d)
ØSetting: over-parametrized linear regression
ØTraining data: feature vectors 𝑿 = [𝒙𝟏 ∈ ℝ𝒑, 𝒙𝟐 ∈ ℝ𝒑, … , 𝒙𝒏 ∈ ℝ𝒑], 

labels 𝒀 = 𝑿𝜷 + 𝜺.
ØAssumption: # parameters 𝒑 > 𝒏 #samples
ØRidge estimator: add an ℓ𝟐 regularization w/ parameter 𝝀

Ø Question: how does adding transformed samples impact the ridge 
estimator’s generalization error?

Algorithmic and Statistical Frontiers in Deep Learning

𝑳 8𝜷 = 𝑿8𝜷 − 𝒀 𝟐
𝟐
+ 𝝀 ⋅ 8𝜷 𝟐

𝟐
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Provable improvement
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ØQuestion: how does the estimation error of  the ridge estimator 8𝜷(𝑿, 𝒀)
compare to the augmented ridge estimator 8𝜷𝒂𝒖𝒈 = 8𝜷(𝑿𝒂𝒖𝒈, 𝒀𝒂𝒖𝒈)?

ØResult 1: For one sample 𝑥 and a label-invariant transformation 𝐹, adding 
the transformed sample reduces the estimation error of  the ridge estimator

ØIntuition: The transformed sample adds a new direction outside the span 
of  the training data, which does not cover the entire space because # 
samples < dimension.

𝒆 8𝜷 − 𝒆 8𝜷𝒂𝒖𝒈 ≥
𝜷*𝑷𝑿,𝑭𝒙

𝟐

𝒏

Notation: 𝑃𝑋⊥ denotes the projection to the orthogonal subspace of  𝑋
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Provable improvement
ØQuestion: how does the estimation error of  the ridge estimator 8𝜷(𝑿, 𝒀)

compare to the augmented ridge estimator 8𝜷𝒂𝒖𝒈 = 8𝜷(𝑿𝒂𝒖𝒈, 𝒀𝒂𝒖𝒈)?

ØResult 2: For two random samples 𝑥1, 𝑥2, adding the mixup samples 
𝑥𝑎𝑢𝑔 = 𝛼𝑥1 + 1 − 𝛼 𝑥2 reduces estimation error

ØIntuition: Regularization via shrinking the training data
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𝒆 8𝜷 − 𝒆 8𝜷𝒂𝒖𝒈 ≥
𝝀𝟐 𝑿𝜷 𝟐

𝒏𝟐

Using 𝔼 𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈$ = 𝟏 − 𝟐𝜶 𝟐 𝑿
!𝑿
𝒏

⇒ 𝔼 𝑿!𝑿(𝒙𝒂𝒖𝒈𝒙𝒂𝒖𝒈!

𝒏(𝟏
= 𝒏

𝒏(𝟏
+ 𝟏+𝟐𝜶 𝟐

(𝒏(𝟏)
𝑿!𝑿
𝒏

Less than one!
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Provable improvement
ØQuestion: how does the estimation error of  the ridge estimator 8𝜷(𝑿, 𝒀)

compare to the augmented ridge estimator 8𝜷𝒂𝒖𝒈 = 8𝜷(𝑿𝒂𝒖𝒈, 𝒀𝒂𝒖𝒈)?

ØResult 3: For a sample 𝑥 and two label-invariant transformations, adding 
the transformed sample reduces estimation error

ØIntuition: Further expands search space

Algorithmic and Statistical Frontiers in Deep Learning

𝒆 8𝜷 − 𝒆 8𝜷𝒂𝒖𝒈 ≥
𝜷*𝑷𝑿,𝑭𝟏𝑭𝟐𝒙

𝟐

𝒏
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Bias and variance metrics
ØQuestion: How do we measure generalization effects in a practical 

scenario?
ØIdea: Separate the randomness from the deterministic part. Train an 

ensemble of  models.

ØError score: measure acc. of  majority label. Ex. correct
ØInstability score: measure % of  mislabels compared to majority label. 

Ex. 40%

Algorithmic and Statistical Frontiers in Deep Learning

#𝑦#
+ - - + +

#𝑦$ #𝑦% #𝑦& #𝑦' majority
+

true
+
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Validation on MNIST
• Observation 1: Label-invariant transformations indeed reduce the error 

score!

Algorithmic and Statistical Frontiers in Deep Learning
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Validation on MNIST
• Observation 2: Mixup reduces the instability score as we increase the 

fraction of  mixing same-class digits

Algorithmic and Statistical Frontiers in Deep Learning

MNIST
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Validation on MNIST
• Observation 3: On MNIST, translations do not add new information on 

top of  rotate, cutout, and random cropping

Algorithmic and Statistical Frontiers in Deep Learning
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Uncertainty-based sampling

Algorithmic and Statistical Frontiers in Deep Learning

Data Augmented data

Inspect the “information gain”

TF1 TFn

TF1 TFn

Step 3: Model selects TFs with the 
highest loss during training

Rotate

Invert

Cutout

Mixup

Step 1: Users provide 
transformation functions

large

small

Step 2: Randomly sample K 
transformation functions

conceptually similar to Adversarial AutoAugment [ZWZZ, ICLR’20] but simpler
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Experimental results
ØEvaluation on multiple image classification datasets and models

ØHighlight 1: 79% accuracy on ImageNet using ResNet-50, comparable 
to SoTA with less computation

ØHighlight 2: By increasing # augmented samples, accuracy 85% on 
CIFAR-100 using WideResNet

Algorithmic and Statistical Frontiers in Deep Learning

CIFAR-10 CIFAR-100 SVHN
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Ablation studies
ØWhy it works?
ØOur method learns and reduces the frequencies of  the better performing 

transformations during training!

Algorithmic and Statistical Frontiers in Deep Learning

Composition of  transformationsModel: PyramidNet + ShakeDrop
Dataset: CIFAR-10
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Summary
ØTakeaway: We provide a theoretical framework to understand data 

augmentation better, and a new augmentation sampling algorithm.

ØTheory & Intuition: geometric intuition formalized via the span of  
training data.

ØAlgorithm: Uncertainty-based augmentation sampling by inspecting 
how large the losses of  the transformed samples are!

ØExperiments: SoTA quality on several image classification benchmarks.

Algorithmic and Statistical Frontiers in Deep Learning
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Further reading
ØArxiv: 2005.00695

ØBlog post: http://hazyresearch.stanford.edu/data-aug-part-3

ØCode release: http://github.com/SenWu/dauphin

Algorithmic and Statistical Frontiers in Deep Learning
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Data augmentation in semi-
supervised learning

Algorithmic and Statistical Frontiers in Deep Learning
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Combining unlabeled and labeled data
• Motivation: training neural networks requires lots of  labeled data
• Semi-supervised learning: combine both labeled and unlabeled data 

together
• Examples: imagine having both labeled and unlabeled images

• Approaches:
• Label propagation: assign labels to previously unlabeled data points
• Self-training: first a supervised learning algorithm is trained based on the labeled

data. This classifier is then applied to the unlabeled data to generate more labels

• Intuition: unlabeled data helps by estimating the features more 
accurately

Algorithmic and Statistical Frontiers in Deep Learning
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Data augmentation
• Data augmentation is naturally suited for semi-supervised learning
• Consistency regularization is a method for using data augmentation in 

semi-supervised learning [Unsupervised data augmentation for 
consistency training, Xie et al’20]
• Encourages the labels of  the original data 𝑥 and the augmented data B𝑥 to 

be similar:

Algorithmic and Statistical Frontiers in Deep Learning
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Data augmentation in text 
classification

Algorithmic and Statistical Frontiers in Deep Learning
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Composition of  fragments
• Good-enough compositional data augmentation, Andreas’20: provide a 

compositional bias in conditional and unconditional sequence models
• Motivation: we often want models to generalize beyond training dataset
• Examples:

• Approach

Algorithmic and Statistical Frontiers in Deep Learning
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Recap
ØAn overview of  data augmentation

ØMotivation
ØHow data augmentation works
ØMajor challenges
ØPrevious work

ØA theoretical framework that precisely analyzes the generalization 
properties of  data augmentation
ØThree categories of linear transformations in an over-parametrized setting
ØUncertainty-based sampling

ØResearch trends
ØSemi-supervised learning: consistency regularization
ØText classification: composition of  sentence fragments
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