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Here, we’ll look at the logistic regression model step-by-step and describe a gradient descent
algorithm to solve the regression model. Suppose we have an input set (x1,y1), (X2,Y2), - .., (Xn, Yn),
where every x; is a p-dimensional feature vector, and y; is a binary label between +1 or —1.

In the logit model, we want to know what’s the probability that a given x has a certain label, in
this case: Prly = +1 | x] and Pr[y = —1| | x]. We'll assume that the probabilities follow the logistic
function. For example, suppose the true label is +1, then we want Pr[y = +1 | x] to be as close to 1
as possible. Using the logistic function, we may represent this as:
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The logistic loss (or log loss) is the negative log-likelihood of the above probability, which is
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At the other extreme, when the true label is —1, we want the probability of (1) to be as low as
possible. Instead, the log loss becomes
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Taken together, we may write the averaged log-loss in the training set as
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where x; ; is the j-the entry of x;.
Unlike the least squares problem, logistic regression does not permit a closed-form solution.
One way to solve this regression problem is using an optimization algorithm such as gradient



descent. We need to compute the gradient of the loss, VL(B). Then, we set a step size parameter 7;
(usually between 0 and 1), for t = 1,2, ..., T. With the gradient, we can update B as follows:
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Recall that the gradient is a vector that includes the entry-wise partial derivative of L. Let’s
look at one entry as an example. For a particular (x;, y;), let’s look at the partial derivative of the
log-loss over B;:
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foranyj=1,2,...,p. As for By, the partial derivative is similar:
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Taken together, we have obtained the gradient of L.
Lastly, we’ll show that the log loss, £(x) = log(1 + exp(—x)) is a convex function. Recall that a
function is convex if and only if " (x) > 0, or equivalently, a¢(x) + (1 — a)¢(y) > (ax + (1 — a)y).
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With a bit more calculation, one could show that for minimizing a convex function, the gradient
descent algorithm (starting from a random initialization) will eventually converge to a global
minimizer that is approximately optimal for minimizing L(p).



