Supervised Machine Learning and
Learning Theory

Lecture 3: The bias-variance trade-off, and K-nearest neighbors

September 13, 2024




In-class quiz questions

N 5.2
e Recall the definition of R?: 1 — l,fl(yl y_l)z ,
2i=1(Vi—¥)

as a measure of linear regression? Is R always non-negative?

what is the meaning of R?

* Can you explain when R? is non-negativer




In-class quiz questions

Zl 1&xi=%)(yi—y)
Jz L (x—%)2- Jz ' i-5)

e Recall the definition of correlation coefficient:

_ 1 1
where X = =)11 1 X, Y = Y

n
* Let x be a uniformly random draw from {x1,%5, ..., X, }. Similarly, let y
be a uniformly random draw from {y;, V5, -.., Yn}
* Suppose that x and y are independent, meaning that for any realization
of x, the value of y is unaffected, i.e., Pr[x = X;,y = yj] = Pr[x =
x;] - Pr[y = yj]. What is the correlation coefficient between X and y?

* Generalize this to the case when x and y are arbitrary, independent
random variables?




In-class quiz questions

* Recall the ordinary least squares estimator as follows:
p=&TX)XTy

* When is the OLS estimator well-defined?




In-class quiz questions

* What 1s the rank of the following matrix?

n, 0, , 07

0,n—1,0, ey 0

A =diag(ln,n—-1,...,1]) =(0,0,n — 2, ., 0

0,0, e 0,1
* What about the following matrix? 0.0, 0-
0,0,..,1,0, v 0

A=diag([O,...,O,r,r_1;---11])= 00, ...,0,r—1...,0

0,0, ,0,1.




Lecture plan

* The bias-variance tradeoff




A fundamental trade-off in machine learning

* The bias-variance trade-off is a fundamental aspect of a machine

learning model

* Recall the mathematical setup of supervised machine learning: we have a
(X1, Yn)}, in which every sample is

set of samples {(x1, V1), (x5, ¥2), ...,

drawn from an unknown distribution

D

* The training loss of a model fW is defined as

L(fuw) = Z#(fwocl) 7~

* The test loss 1s defined as
L(fW) — IIE':(x,y)~D

[f(fw(x),y)]/

Ensuring that the gap

between these two are

small is a fundamental
challenge



Let us look at a case study

* Suppose we would like to train a model to learn the true regression
function f(x) = x?% (x is a scalar)

* We use polynomial features in this case study:
e A constant function: fo(x) = B,
e A linear function: f;(x) = By + x - B4
* A quadratic function: fz (x) = ,éo + x - ,@1 + x% - ,5’2
* A ninth-degree polynomial function: fg (x) = ,go + x - ,@1 + o+ x7 - Bg




Four fitted models

Four Polynomial Models fit to a Simulated Dataset

15

-==- y~poly(x, 1)
y ~ poly(x, 2)
y ~ poly(x, 9)
— = truth

* Zero predictor model fits poorly

1.0

|e Linear model is reasonable
* Quadratic model fits much better

* Ninth degree model seems rather wild

0.0

-t
S -




Repeat the experiment for three times

* The zero predictor fo(x) slightly varies, but the ninth-degree polynomial varies
fo(x) quite a bit
* Variance of fy(x) is smaller than the variance of fo(x)

Simulated Dataset 1 Simulated Dataset 2 Simulated Dataset 3
wn
A =--y-1 —-=-y-1 24 =-y-1
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Predicting f (xg)

* Xog = 0.9
« y = £(0.9) = x5 = 0.81

Simulated Predictions for Polynomial Models

* 250 independent runs: For each
resample, we fit polynomials with

degree 0,1, 2,9, and plot £(0.9)
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Average prediction

across 250 runs




Predicting f (xg)

* Squared bias:
fZ (x) ~ fg (x) < f]_ (x) < f() (x) Simulated Predictions for Polynomial Models

* Increasing degree from 2 to 9
does not further reduce bias

1.0

* Variance: -

o) < i) < 00 < fo) 1 _

* Increasing degree increases .
variance . Proportional to vatiance

T T
0 1 2

Average prediction across 250 f(x, = 0.9) Polynomial Degree




Ilustration

* Bias-variance curve as a function of the degree of the polynomial:
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Let us study the test loss more deeply

* Suppose the true function is f

* Let the labels be defined as y = f(x) + &, where E|g] = 0

* LetS = {(x1, V1), (X2,¥2), -+, (Xpn, V) } be the training dataset
* et f be a function estimated from the training dataset

* Let X be a random sample drawn from D. The test MSE 1s defined as

L(x) = E(xy)~p [(y — f(x))z]




Let us expand the test loss
* The test MSE is equal to

L(x) = IE':(x,y)~D[(:y - f‘(x))Z]
i R R R 2
= Egeyyn |(v = F0O + F() - Bs[f 0] + Es[f ()] - 700) |

= E(xy)~p (5 + () = Es[f ()] + Es[f ()] - (x))2]

* Recall that E|e] = 0, thus, the above must be equal to
) ) L \2
L(x) = E(x,y)~D [e4] + [E(xy)~D [(f(X) - IES[f(x)] + [ES[f(x)] — f(X)) ]

* Var(e) = E(x y)~p [£%] is the itreducible error from observing label y




Let us look at the reducible error

e The reducible error term:

Bayr-os | (700 — Bs[7G0] + E5lf @] - F )’

= Eguyyens [(F) = Bs[FGON] + Boupyens | (EslF 0] - F@))']
+ 2B yyeps [(FQ) — Es[f()]) - (Es[f ()] - f ,(f))]

~ This is zero: E,[E,[x] —x] =0

= E(xy)~D.s [(f(x) — Es[f(x)])zl + E@xy)~p,s [(Es[f(x)] - f(x))zl
/

This is y
=Bias (f(x))z +Var (f(x))




To summarize the derivations

* Let x be a test sample from D and lety = f(x) + ¢

* Let f be the estimator learned from the training dataset

* The expected test error over the training dataset 1s equal to

Pl (] = Bs [(8 + () = Es[f ()] + Es[f ()] - (x)ﬂ

= Var(e) + Bias (f(x))z + Var (f(x))

— N\

Irreducible error This variance is from the randomness of

the training dataset upon the estimator f




Back to the case study

Simulated Predictions for Polynomial Models

1.0

0.8

Predictions

0.6

u—|

3ias<

0.4
1

0.2

Polynomial Degree




Crror

f is degree nine,
high noise

Visualization of bias variance
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Lecture plan
* K-nearest neighbors (KINN)




K -nearest neighbors regression

* Unlike linear regression, here there are no parameters (aka. non-parametric)

* K is a user-defined constant: K is an integer, e.g., 1,2,3, -+

* Given a value for K and a prediction point X, f (xg) is the average of the
responses of K nearest neighbors:

fad =%

XiENg(x¢)

* N (xg) is the set of K training observations that are closest to X




Example: 1-nearest neighbor regression

k=1

* Prediction of the median house @577
value of a neighbor given the
percentage of households with low &
socioeconomic status (LSTAT) (833,175)

15
|

(30.81,14.4)

medv

(34.77,13.8) (37.97,13.8)

* Orange curve: f(xg)

(28.2%10.5)

e f(xg) equals to the response of Xy’s o -
nearest neighbor 2988,

(36.88,7'

. f (xg) is a step function

(80.59.5)
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Example: 1-nearest neighbor regression

k=1
—_ 29.55,23.7
* Xg = 32 =
o
Y
L —
Ny (x,) = {30.81) .
'c>3 1|.r_) n (30.81,14.4)
A OEJ i x (34.77,13.8) (37.97,13.8)
|
o | (28.28,10.5) I
|
(29.68,8.1) I
| (36.98,7)
|
o (30.59.5) I
I
| | [ | [ |
28 30 32 34 36 38

Istat




f (xg) is a step function

k=1

* xo = 32.79:1t 1s a switching point [
* NK(X()) — {3081} or NK(X()) — (28.32,17.8)

(34.77)

¢ NOtC that 3279 — 3081 — 198 — g - d05124) p ¢ (34.77,13.8) (37.97,13.8)
34.77 — 32.79 |

« f(xy = 32.79) = 144 or |

f(xo — 32.79) — 13.8 0 — | I(30.33,5) | : | | |

28 30 32 34 36 38

Istat




f (xg) is a step function

k=1
° X 0 —_ 33 (29.55.23.7)
¢ NK (xO) — {34‘.77} (28.32,17.6)
 Note that 34.77 — 33 =177 <
33 _— 3081 — 219 g T 30.85124) )I( (34.77,13.8) (37.97,13.8)
I
. o (28.26,10.5) :
* f(xo =33) =138 i ks |
[ (36.98,7)
I
o — (30.59.5) l
I
[ | [ | | |
28 30 32 34 36 38

Istat




f (xg) is a step function

k=1
—_— 29.55,23.7
* xo = 34 g
o
Y
® —
Ny (xy) = {34.77) o
> n  _|
3 (085144) }(34 77,13.8) (37.97,13.8)
~ = TEALS I413.
o p— p— [
flxo = 34) = 13.8 .
[
o | (28.28,10.5) :
|
(29.68,8.1) I
[ (36.98,7)
|
o (30.50,5) l
~ |
| | [ | [ |
28 30 32 34 36 38
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f (xg) is a step function

k=1
—_— 29.55,23.7
* xXo = 36 g
o |
N
® —
Ny (xo) = {36.98} i
'c>3 1|.{_) n (30.81,14.4)
A OEJ [ (34.77,13.8) (37.97,13.8)
* f(xo=36)=7
o | (28.2¢,10.5)
(29.688.1)
X (36.98,7)
0o — (80.8.5) :
[ [ [ [ [ [
28 30 32 34 36 38

Istat




Example: 2-nearest neighbor regression

k=2
* f(xg) equals to the average of @557
responses of Xg’s 2 nearest
neighbors R
(28.32,17.8)
> o _|
°c - (30.81,14.4)
GE) (34.7%13.8) (37.9513.8)
o (28.28,10.5)
(29.68,8/1)
(36.98,7)
o — (30.59.5)
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Example: 2-nearest neighbor regression

k=2
{ xO — 32 (29.55,23.7)
8 —
* N (xo) = {30.59,30.81} .|
A 5+14 4 g ';9 | 085N (34.77,13.8) (37.97,13.8)
* f(xo=32) = '
o (28.28,10.5)
T s
(29.68.8/1) I
: (36.98,7)
o - (30.89.5) :
I I I I I I
28 30 32 34 36 38

Istat




Example: 2-nearest neighbor regression

k=2
° X 0 —_ 36 (29.55,23.7)
8 —
* NK (x()) — {34'77;36-98} (28.32,17.8)
13847 g 2 (308,14.4) . oo o0
* flxo =36) =—
5 (28.28,10.5) .
(29.68,81) :
| (6887)
o (30.89.5) :
[ T | I i I
28 30 32 34 36 38
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Example: S-nearest neighbor regression

k=5
* f(xg) equals to the average of e
responses of X(’s S nearest
neighbors R
(28.32,17.8)
* f(xg) is smoother as K increases § e oo iy s
\
|
o (28.28,10.5) “
(29.68.8.1)
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Example: S-nearest neighbor regression

k=5
o xO — 3 6 (29.55,23.7)
° NK (xO ) = (28.32,17.8)
{30.59,30.81,34.77,36.98,37.97} |
% Q N (30.81,14.4)
g - (34.77,13.8) (37.97,13.8)
~ 5+14.4+13.8+7+13.8
° f (xO — 3 6) — = . (28.28,10.5) X
" |
(29.68.8.1) I
| (36.98.7)
I
o (30.59.5) I
I I I I % [
28 30 32 34 36 38

Istat




medv
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A(xo) is smoother for a larger K

k=1
(29.55,23.7)
(28.32,17.)
(30.81,14.4)
~ (34.77,13.8) (87.97,13.8)
(28.26,10.5)
(20.68.8.1)
(36.98.7)
(80.5.5)
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k=2
(29.55,23.7)
(28.3%17.{‘.)
(30.8&14.4)
(34.77,13.8) (37.97,13.8)
(28.28,10.5)
(29.68,8/1)
(36.98.7)
(30.59.5)
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k=5
(29.55,23.7)
(28.32,17.8)
(30.81,14.4)
- (34.7?}13.8) (37.9'7;€13,a)
(28.28,10.5)
(29.68.8.1)
(36.98.7)
(30‘39.5)
I I [ I I I
28 30 32 34 36 38
Istat

* Question: Is the model more flexible or less flexible for a larger K?




The bias-variance tradeoff

° Train 1 I{N N model to Simulated Predictions for KNN
learn the true function

f(x) = x? (X 1s a scalar)
¢ xO —_ 09 i
y = £f(0.9) =0.81
e 250 runs: for each

dataset, we fit KNN with !

K = } ) 5 ) 50 ) 100, and . ° Proportjonal

plOt f (09) | to variance

1.5

Predictions

Bias

0.0

1 5 50 100




The bias-variance tradeoff

Simulated Predictions for KNN

1.5

* The square of bias
fs(x) ~ f1(x) < fso(x) <

f100(x) 2
* Increasing K increases bias &
.
© rusgimen }
) Vaflaﬁce A A 5 _. ° xrw.Proportional
flOO(x) < fSO(x) < fS(x) < S - to variance
f1(x)

* Increasing K reduces variance




Reference

* Linear regression

* In sklearn: linear model.LinearRegression

* See coding examples at https://scikit-
learn.org/stable/modules/generated/sklearn.linear model.LinearRegression.html

e In statsmodels: OLS estimator

* See coding examples at https://www.statsmodels.org/stable/regression.html, from which
you can read off the standard errors to construct the confidence intervals



https://scikit-learn.org/stable/modules/classes.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html
https://www.statsmodels.org/stable/regression.html

K -nearest neighbors regression in Python

In [3]:] from sklearn.neighbors import KNeighborsRegressor
import pandas as pd
import seaborn as sns

In [4]: df_train = pd.DataFrame({'lstat': X_train.reshape(-1,), 'medv': y train.reshape(-1,)})
fig, axes = plt.subplots(3, 1, figsize = (5,10))

n_neighbors = [1, 2, 5]

1 T = np.linspace(28, 39, 500)[:, np.newaxis] # For graphing
Alternatively,
. <1 ) for i i prafn(n_npinhhnr:\ -
Welghts - dlStaﬁCG 5 Iknn = KNeighborsRegressor(n, weights = 'uniform') I
. . y_pred = knn.fit(X_train, y_train).predict(T)

Where Welght pOlIltS fit df = pd.DataFrame({"T": T.reshape((-1,)), "y pred": y pred.reshape((-1,))})

5 sns.lineplot(data = fit df, x = 'T', y = 'y pred', color = 'blue', ax = axes[i])
by the lnverse Of sns.regplot(data = df_train, x = 'lstat', y = 'medv', ax = axes[i], fit_reg = False, scatter_kws={"color": "black"}
thelr dlstance axes[i].set_xlim([28, 39])

axes[i].set_ylim([0, 30])

fig.tight_layout()
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Reference

Hstimating the coetticients in Python

* sklearn.linear_model.LogisticRegression

* https:/ /scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html




Announcements

* Homework one will be released in the afternoon—stay tuned on piazzal




