Supervised Machine Learning and
Learning Theory

Lecture 4: Classification

September 17, 2024




In-class quiz questions

* Can you explain the three terms in the bias-variance trade-off?

* Is the bias-variance trade-off specific to linear regression, or does it
apply to any machine learning model?

* For K-nearest neighbors, does the model become more flexible or less
flexible for a larger K?

* Suppose you would like to fit a polynomial function, how would you do
that using linear regression?




In-class quiz questions

* What is the relation between the gradient, the derivatives, and the partial
derivatives?

* For a matrix X, is the rank of X the same as its transpose X ' ? Why or
why not?

e Name several commonly used metrics for linear reoression?
y




Lecture plan

* Logistic regression




Classification example I

* Handwritten digit classification
* Colored handwritten digits

e Street view house numbers
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Image classification
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CIFAR-10: Canadian Institute For Advanced Research 60,000 images in 10 diftferent classes, with 6,000 images of each class




A classification problem

* A dataset containing information on ten

## # A tibble: 10,000 x 4
thousand customers

## default student balance income

o default: whether the customer defaulted R
on their debt # 1 No No 730. 44362.

e student: whether the customer is a student iR res Sl L2100
## 3 No No 074 317617,

* balance: the average balance that the vt 4 N " oo 3570s.
customer has remaining on their credit & i i e
card after making their monthly payment e e o L

* Income: income of customer ## 7 No No 826. 24905.
## 8 No Yes 809. 17600.

## 9 No No 1161. 37469.

## 10 No No 0 29275.

 Predict which customers will default on
their credit card debt

## # .. with 9,990 more rows




The logistic loss

* While zero-one loss makes intuitive sense, minimizing the zero-one loss 1s
computationally hard

* Logistic loss provides an approximation of the zero-one loss
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* The logistic function: - (note: sigmoid function ranges between —1,1)
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Understanding the log loss

* Odds function: (we’ll insert the value of v from a linear model)

exp(v)
1+exp(v)’

ranges between zero and one

* Logistic loss: negative log of the logistic function

exp(v)

t(v) = —log 1+ exp(v)

= log(1 + exp(—v))

* Exercise: What is the value of £(10), and what about £(—10)?



Using logistic regression for binary classification

* Suppose the labels are either +1 or —1. For every sample X;, ¥;, suppose
x; includes p features in total, indexed by subscripts as X; 1, X; 2, .., X; p

* Coeflicients of the logistic regression model: 5y, B1, B2, ..., Bp. Let

Vi = Bo + Bixir + PaXip + o+ BpXip
* The log-loss of x;, y; 1s

log(1 + exp(—y; - v;))

* The averaged log-loss applied to a training set of size n is

n

1

;Z log(1 + exp(—y; - v;))
=1




Example: Predicting credit card default

* Customers with a high balance are more likely to default

* Students tend to have higher balances
* Among customers with a given balance, students are less likely to default

o
3 0 é
[q\}
QS i .
2 S ! :
[0} &L o ! !
-— < N :
T n 3 | ' :
— - 2 !
> @
(3] o
B © g4
a 5 T
9_.) 0
O 8 ;
o —
I I I [ I [
500 1000 1500 2000 No Yes
Credit Card Balance Student Status

* Question: How can we use (student, balance, income) to predict default?




Logit model
* The logit model of a sample X, Y (log-odds) is

l[ww=um

og (Y = O|X)] = BTX = B, + B, - student + 5, - balance + B3 - income,

where X = (1, student, balance, income), and this is the same as:

1

Priy = 1|X] = 1 + e—(Bo+p1-student+f,-balance+f3-income)

* Find By, 1, B2, B3 by minimizing the averaged log-loss over the training
set. Exercise: write down the training loss for this example

* Prediction: if v; > 0,y; = +1;if v; < 0,y;, = —1




Maximum likelihood estimation
* Maximum likelihood estimation (MLE): likelihood of Y given X

eﬁ0+ﬁ1X1+'“ﬁpo
1 - eﬁ0+,81X1+‘“,8po

1
1 - eﬁ0+,81X1+‘“,8po

Prly = 1|X] =

Pr[Y = 0|X] =

* Objective of MLE: Find the values of [ that maximizes the likelihood
of observing n sample points




Maximum likelihood estimation

* The likelihood of the training data is the overall probability for a fixed set
of coefficients [y, ***, B, (the case of binary labels 0,1). Here we are taking
the product of all the individual probabilities from n samples:

n 6.80+.81xi1+”'.8pxip 1
HP r(V =yilX =x) = 1_[ T+ oPot Bt Borey 1_[ T Pt Bt By
=1 '

i:y;=1 Jyj=0

| J | J
Probability of response = 1 Probability of response = 0

Assume samples are independent

* BEasier to compute after taking negative log of the above likelthood. Why?




MLE for multi-class classification

* Suppose the label Y takes values in {1,2, -+, K}. Let X be a p-dimensional

feature vector

e [.et U be a vector such that we set a linear model for each class
Uy = Boa1 + P11X1+ - Bp1Xy

ug = Box + BrxX1 + - BpxXp

* Cross-entropy loss

exp(uy)
{{= 1 exp(u;)

* Verity that the cross-entropy loss is always positive?

£(X,Y) = —log




Lecture plan

* Linear discriminant analysis




Example

* Mixture of Gaussians in crabs: A zoologist
considered a dataset of crab measurements among
1000 crabs (during their 1892 Easter vacation). All
but one attribute follows a single normal
distribution: Forehead to body length ratio

* N(u, 0%) with mean u and variance o

e How do we fit a dataset with a mixture of [
(Gaussiansr?
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Reference: http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html



http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html

Linear discriminant analysis

Linear Discriminant Analysis (LDA): Suppose we have K classes, we
approximate the data distribution of each class with a Gaussian distribution

* Tj: prior probability that a randomly chosen observation comes from the
k-th class

* f(X) = Pr(X|Y = k): density function of X coming from the k-th class

* Pr(Y = k|X = x): probability of x having label k



Example: Iris dataset

* Pattern recognition: Predict class of iris plant. There are three classes

w f
3 y b

Iris Versicolor Iris Setosa Iris Virginica




Sepal and petal of 1r1s




Example: Iris dataset

* 50 samples from each of three class of Iris (versicolor, setosa, virginica)

* Four features: sepal length, sepal width, petal length, petal width

Petal
Samples S~
(instances, observations)

Sepal Sepal Petal Petal Class
length width length  width label

Setosa

2 4.9 3.0 1.4 0.2 Setosa

50 6.4 3.5 4.5 1.2 Versicolor

150 | 5.9 3.0 5.0 1.8 Virginica
I I | N
\ Sepal
/ Class labels
Features (targets)

(attributes, measurements, dimensions)
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Generative model: Linear discriminant analysis

e Model Pr[X = x| Y = k] * Model Pr(X =x | Y = k|
rsepal length sepal length
sepal width :
X = sepal width
petal length X =
| petal width . petal length
_petal width

Y € {versicolor, setosa, virginica}

Y € {versicolor, setosa, virginica}
by a multivariate normal distribution

N (ug, ) with mean p, covariance matrix %
by a multivariate normal distribution

N(u, L) with mean py,, covatiance matrix X




LLDA for one-dimensional data

* For the k-th class, model density function as N (uy, 0%)

* Density function: Pr|X = x|Y = k]| = fi,(x) = Z;Gk exp (_ % (x — lik)z)

* Within each class, the features have a center y, for every class k and common
variance o*
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Multi-dimensional case

* N(u, ) is 2 multi-dimensional Gaussian with mean U, covariance X: U is
a p-dimensional vector, covariance is a pXp matrix: & = E[xx "]

e Jllustration of a two-dimensional multivariate normal distribution
* Two dimensions: blue and red

* Projection to every dimension is still a Gaussian

e Centered at zero




LLDA for multi-dimensional data
* For the k-th class, model density function as N (p, X)

* Density function

PriX = x|¥ = k] = fie(®) = —p—rexp (=3 (x — ) T20x — o))
(2m)z|Z|2

* Within each class, the features have a center Y, for every class k
and common variance 6




Example

* Example with a two-dimensional synthetic dataset

X1 Xl
Dash lines: Bayes decision boundaries Solid lines: LDA decision boundaries
(they are linear)




Estimating the center

How does this work?
1. Estimate the center of each class ly:

1
e ™ By, :k}Z;i

i1 y=




Estimating the covariance
How does this work?
2. Estimate the common covariance matrix X
* One-dimensional data: G = %Z’,ﬁzl Yy =k (Xi =)

* Multi-dimensional data: Compute the vectors of deviations
(1 —[y, ), (xa— [y, ), (X, — [y ) and their covariance




Estimating the prior

How does this work?

3. Estimated by the fraction of training samples of class k: Pr|Y = k| = 7,

A #{l:yi=k : .
Ty = { 3;; ). Fraction of training samples of class k




Prediction

* Recall: Pr(Y = k|X = x) is probability of x having label k
* LDA predicts the label with highest probability

* We use Bayes rule

Pr(Y =k,X=x) Pr(X=x|Y =k) Pr(Y =k)
PriX=x) YK . Pr(X=x|Y =i)-Pr(Y =i)

PrlY = k|X = x] =




Recap

* Mixture of Gaussian model: A prior probability for each cluster, with
one Gaussian distribution for the density of every cluster

* The clusters have a separate center and a common covariance matrix

* Parameter estimation involves estimating the mean, covariance, and prior
of the mixture of Gaussian model

* We have shown that we can estimate each with simple statistics from data




Announcements

* TA office hours
* Monday, 1 PM — 1:45 PM, WVH 208 (or via Zoom)
* Wednesday, 1 PM — 1:45 PM, WVH 208 (or via Zoom)
* Friday, 12:30 PM — 1:30 PM, 2274 floor, 177 Huntington Ave (or via Zoom)

* Join piazzal Access code: 8128pzbevas. Signup link:
https:/ /piazza.com/northeastern/fall2024 /ds522020725202510




