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In-class quiz questions
• Can you explain the three terms in the bias-variance trade-off?

• Is the bias-variance trade-off  specific to linear regression, or does it 
apply to any machine learning model?

• For K-nearest neighbors, does the model become more flexible or less 
flexible for a larger K?

• Suppose you would like to fit a polynomial function, how would you do 
that using linear regression?



In-class quiz questions
• What is the relation between the gradient, the derivatives, and the partial 

derivatives?

• For a matrix 𝑋, is the rank of  𝑋 the same as its transpose 𝑋!? Why or 
why not?

• Name several commonly used metrics for linear regression?



Lecture plan
• Logistic regression



Classification example I
• Handwritten digit classification
• Colored handwritten digits
• Street view house numbers



Image classification
• Image classification: assign a 

label to an entire image or 
photograph

• Object recognition

CIFAR-10: Canadian Institute For Advanced Research 60,000 images in 10 different classes, with 6,000 images of each class



A classification problem
• A dataset containing information on ten 

thousand customers
• default: whether the customer defaulted 

on their debt
• student: whether the customer is a student
• balance: the average balance that the 

customer has remaining on their credit 
card after making their monthly payment
• income: income of  customer

• Predict which customers will default on 
their credit card debt



The logistic loss
• While zero-one loss makes intuitive sense, minimizing the zero-one loss is 

computationally hard
• Logistic loss provides an approximation of  the zero-one loss

• The logistic function: "
"#$!"

 (note: sigmoid function ranges between −1,1)



Understanding the log loss
• Odds function: (we’ll insert the value of  𝑣 from a linear model)

%&'())
"#%&'())

, ranges between zero and one

• Logistic loss: negative log of  the logistic function

ℓ 𝑣 = −log
exp(𝑣)

1 + exp(𝑣)
= log 1 + exp(−𝑣)

• Exercise: What is the value of  ℓ(10), and what about ℓ −10 ?



Using logistic regression for binary classification
• Suppose the labels are either +1	or −1. For every sample 𝑥+ , 𝑦+ , suppose 
𝑥+ includes 𝑝 features in total, indexed by subscripts as 𝑥+,", 𝑥+,-, … , 𝑥+,.
• Coefficients of the logistic regression model: 𝛽/, 𝛽", 𝛽-, … , 𝛽.. Let

𝑣+ = 𝛽/ + 𝛽"𝑥+," + 𝛽-𝑥+,- +⋯+ 𝛽.𝑥+,.
• The log-loss of 𝑥+ , 𝑦+ is

log 1 + exp(−𝑦+ ⋅ 𝑣+)
• The averaged log-loss applied to a training set of size 𝑛 is

1
𝑛
;
+0"

1

log 1 + exp −𝑦+ ⋅ 𝑣+



Example: Predicting credit card default 
• Customers with a high balance are more likely to default
• Students tend to have higher balances
• Among customers with a given balance, students are less likely to default

• Question: How can we use (student, balance, income) to predict default?
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Logit model
• The logit model of  a sample 𝑋, 𝑌 (log-odds) is

log !" 𝑌 = 1 𝑋
!" 𝑌 = 0 𝑋 = 𝛽#𝑋 = 𝛽$ + 𝛽% ⋅ student + 𝛽& ⋅ balance + 𝛽' ⋅ income, 

where 𝑋 = (1, 𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝑏𝑎𝑙𝑎𝑛𝑐𝑒, 𝑖𝑛𝑐𝑜𝑚𝑒), and this is the same as:

Pr 𝑌 = 1|𝑋 =
1

1 + 𝑒!(#!$#"⋅&'()*+'$##⋅,-.-+/*$#$⋅0+/12*)

• Find 𝛽/, 𝛽", 𝛽-, 𝛽H by minimizing the averaged log-loss over the training 
set. Exercise: write down the training loss for this example

• Prediction: if  𝑣+ > 0, >𝑦+ = +1; if  𝑣+ ≤ 0, @𝑦+ = −1



Maximum likelihood estimation
• Maximum likelihood estimation (MLE): likelihood of  𝑌 given 𝑋

Pr 𝑌 = 1|𝑋 =
𝑒I##I$J$#⋯I%J%

1 + 𝑒I##I$J$#⋯I%J%

Pr 𝑌 = 0|𝑋 =
1

1 + 𝑒I##I$J$#⋯I%J%

• Objective of  MLE: Find the values of  𝛽 that maximizes the likelihood 
of  observing 𝑛 sample points



Maximum likelihood estimation
• The likelihood of the training data is the overall probability for a fixed set 

of coefficients 𝛽/, ⋯ , 𝛽. (the case of binary labels 0,1). Here we are taking 
the product of all the individual probabilities from 𝑛 samples:

Assume samples are independent
• Easier to compute after taking negative log of the above likelihood. Why?

G
456

7

𝑃𝑟(𝑌 = 𝑦4|𝑋 = 𝑥4) = G
4:9%56

𝑒#!$#":%"$⋯#&:%&

1 + 𝑒#!$#":%"$⋯#&:%&
G
<:9'5=

1
1 + 𝑒#!$#":'"$⋯#&:'&

Probability of  response = 1 Probability of  response = 0



MLE for multi-class classification
• Suppose the label 𝑌 takes values in {1,2,⋯ , 𝐾}. Let 𝑋 be a 𝑝-dimensional 

feature vector
• Let 𝑢 be a vector such that we set a linear model for each class

𝑢6 = 𝛽=,6 + 𝛽6,6𝑋6 +⋯𝛽?,6𝑋?
     …

𝑢@ = 𝛽=,@ + 𝛽6,@𝑋6 +⋯𝛽?,@𝑋?

• Cross-entropy loss

ℓ 𝑋, 𝑌 = −log
exp(𝑢L)

∑+0"M exp(𝑢+)
• Verify that the cross-entropy loss is always positive?



Lecture plan
• Linear discriminant analysis



Example
• Mixture of  Gaussians in crabs: A zoologist 

considered a dataset of  crab measurements among 
1000 crabs (during their 1892 Easter vacation). All 
but one attribute follows a single normal 
distribution: Forehead to body length ratio
• 𝑁(𝜇, 𝜎-) with mean 𝜇 and variance 𝜎-

• How do we fit a dataset with a mixture of  
Gaussians?

Reference: http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html 

http://blog.mrtz.org/2014/04/22/pearsons-polynomial.html


Linear discriminant analysis
Linear Discriminant Analysis (LDA): Suppose we have 𝐾 classes, we 
approximate the data distribution of  each class with a Gaussian distribution

• 𝜋N : prior probability that a randomly chosen observation comes from the 
𝑘-th class

• 𝑓N 𝑋 = Pr(𝑋|𝑌 = 𝑘): density function of  𝑋 coming from the 𝑘-th class

• Pr(𝑌 = 𝑘|𝑋 = 𝑥): probability of  𝑥 having label 𝑘



Example: Iris dataset
• Pattern recognition: Predict class of  iris plant. There are three classes



Sepal and petal of  iris



Example: Iris dataset
• 50 samples from each of  three class of Iris (versicolor, setosa, virginica)
• Four features: sepal length, sepal width, petal length, petal width



Distribution of  features

9/17/24



Generative model: Linear discriminant analysis
• Model Pr 𝑋 = 𝑥 ∣ 𝑌 = 𝑘

𝑋 =

𝑠𝑒𝑝𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑒𝑝𝑎𝑙	𝑤𝑖𝑑𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ
𝑝𝑒𝑡𝑎𝑙	𝑤𝑖𝑑𝑡ℎ

𝑌 ∈ {𝑣𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟, 𝑠𝑒𝑡𝑜𝑠𝑎, 𝑣𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎}

by a multivariate normal distribution 
𝑁(𝜇A, Σ) with mean 𝜇A, covariance matrix Σ



LDA for one-dimensional data
• For the 𝑘-th class, model density function as 𝑁(𝜇N , 𝜎-)

• Density function: Pr 𝑋 = 𝑥|𝑌 = 𝑘 = 𝑓N 𝑥 = "
-OP&

exp − "
-P&

' 𝑥 − 𝜇N -

• Within each class, the features have a center 𝜇N for every class 𝑘 and common 
variance 𝝈𝟐



Multi-dimensional case
• 𝑁(𝜇, Σ) is a multi-dimensional Gaussian with mean 𝜇, covariance Σ: 𝜇 is 

a 𝑝-dimensional vector, covariance is a 𝑝×𝑝 matrix: Σ = 𝐸[𝑥𝑥!]
• Illustration of  a two-dimensional multivariate normal distribution
• Two dimensions: blue and red
• Projection to every dimension is still a Gaussian
• Centered at zero



LDA for multi-dimensional data
• For the 𝑘-th class, model density function as 𝑁(𝜇N , Σ)
• Density function

 Pr 𝑋 = 𝑥|𝑌 = 𝑘 = 	𝑓A 𝑥 = 6

BC
&
# D

"
#
exp − 6

B 𝑥 − 𝜇A EΣ 𝑥 − 𝜇A

• Within each class, the features have a center 𝜇N for every class 𝑘 
and common variance 𝝈𝟐



Example
• Example with a two-dimensional synthetic dataset
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Estimating the center
How does this work?
1. Estimate the center of  each class 𝜇N :

𝜇̂A =
1

#{𝑖: 𝑦4 = 𝑘}
`

4:	9%5A

𝑥4
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Estimating the covariance
How does this work?
2. Estimate the common covariance matrix Σ

• One-dimensional data: >𝜎- = "
1
∑N0"M ∑+:S(0N(𝑥+−>𝜇N)

-

• Multi-dimensional data: Compute the vectors of deviations 
(𝑥"−>𝜇S$), (𝑥-−>𝜇S'),⋯ , (𝑥1−>𝜇S)) and their covariance
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Estimating the prior
How does this work?
3. Estimated by the fraction of  training samples of  class 𝑘: Pr 𝑌 = 𝑘 = >𝜋N

>𝜋N =
#{+:S(0N}

1
: Fraction of  training samples of  class 𝑘
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Prediction
• Recall: Pr(𝑌 = 𝑘|𝑋 = 𝑥) is probability of  𝑥 having label 𝑘
• LDA predicts the label with highest probability
• We use Bayes rule

Pr 𝑌 = 𝑘|𝑋 = 𝑥 =
𝑃𝑟(𝑌 = 𝑘, 𝑋 = 𝑥)

𝑃𝑟(𝑋 = 𝑥)
=

𝑃𝑟 𝑋 = 𝑥|𝑌 = 𝑘 ⋅ 𝑃𝑟(𝑌 = 𝑘)
∑456@ 𝑃𝑟 𝑋 = 𝑥|𝑌 = 𝑖 ⋅ 𝑃𝑟(𝑌 = 𝑖)



Recap
• Mixture of  Gaussian model: A prior probability for each cluster, with 

one Gaussian distribution for the density of  every cluster
• The clusters have a separate center and a common covariance matrix
• Parameter estimation involves estimating the mean, covariance, and prior 

of  the mixture of  Gaussian model
• We have shown that we can estimate each with simple statistics from data



Announcements
• TA office hours
• Monday, 1 PM – 1:45 PM, WVH 208 (or via Zoom)
• Wednesday, 1 PM – 1:45 PM, WVH 208 (or via Zoom)
• Friday, 12:30 PM – 1:30 PM, 22nd floor, 177 Huntington Ave (or via Zoom)

• Join piazza! Access code: 8128pzbevas. Signup link: 
https://piazza.com/northeastern/fall2024/ds522020725202510


