Supervised Machine Learning and
Learning Theory

Lecture 6: Cross-validation, bootstrap, and subset selection

September 24, 2024




Warm-up questions

* What’s the difference between the logistic function and logistic loss?
* How could we extend the logit model to multi-class classification?
* What 1s the mixture of Gaussians model?

* What’s the difference between LDA and QDA?

* Why does QDA have a quadratic decision boundary?




Cross validation

* Goal: Using the training dataset alone, find out the test error as closely as

possible

* A first attempt: Randomly split the data in two parts; Train the method in
the first part, compute the error on the second part
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* Issue: loses half the data samples, and the split has a lot of randomness




Example

e Hstimate from engine horsepower

* Auto data: horsepower, gas mileage, and other information for 392 vehicles

* Linear model
= o + f1hotrsepower

* Polynomials

= By + Byhorsepower +fohorsepower?

= [ + Pihotrsepower +,32horsepower2 +,6’3horsepower3

* Which polynomial 1s the right relationship? Partition 392 samples into
two sets with equal size; one is the training dataset and the other one 1s
the validation dataset




Example

e Hstimate from engine horsepower
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* Each line is the result with a different random split of the data into two parts

* Every split yields a different estimate




Leave one out cross-validation

* Foreveryi = 1,---,n,
* Train the model on every point except 1
* Compute the test error on the hold-out point

. Average over all n points
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Leave one out cross-validation
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Leave one out cross-validation
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Leave one out cross-validation
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Leave one out cross-validation
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LOOCV

* Regression

. y( Y. Prediction for the ith sample without using the ith sample

n

CViny = %z (Yi - 37i(_i))2

=1

e Classification

. y( Y. Prediction for the ith sample without using the i-th sample

n
1
CV(n) - 52 ﬂ[)’tiyl l)]
i=1




Back to our example

* Estimate miles per gallon (mpg) from engine horsepower

* LOOCV curve vs. random splitting
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k-fold cross-validation

* Split the data into k subsets/folds

* Foreveryi =1,---, k
* Train the model on every fold except the i-th fold
* Compute the test error on the i-th fold

. Average the test errors
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k-fold cross-validation
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k-fold cross-validation
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k-fold cross-validation
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[LOOCYV vs. k-fold cross-validation

e Hstimate from engine horsepower
e The LOOCY error curve vs. ten-fold cross-validation error curve

LOOCV 10-fold CV
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[LOOCYV vs. k-fold cross-validation

LOOCV

* Gives approximately unbiased estimates of the test error, as each training
dataset contains n — 1 observations

* Average of n fitted models, each of which 1s trained on an almost
identical set of observations

k-fold cross-validation
o . n .
* Each training dataset contains n — . observations

* Average of k fitted models that are less correlated with each other

: .. : 2n
(overlapping training observations are N — )

* Rule of thumb: Usek =5o0rk =10




* Bootstrap




Cross-validation vs. Bootstrap

* Cross-validation: Provide the test error with an independent validation set

* Bootstrap: Provide the standard error of model estimates
p

Residuals:
Min 1Q Median 3Q Max
-15.594 -2.730 =0.518 [y &7 A7 26.199

Coefficients:

Estimate |Std. Error|t value Pr(>|t|)
(Intercept) 3.646e+01] 5.103e+00 7.144 3.28e-12 *xx
crim -1.080e-01] 3.286e-02 -3.287 0.001087 =*x*
zn 4.642e-02 1.373e-02 3.382 0.000778 *xx
indus 2.056e-02] 6.150e-02 0.334 0.738288
chas 2.687e+00 )] 8.616e-01 3.118 0.001925 *=*
nox =177 ax0il 3.820e+00 -4.651 4.25e-06 *xx*
rm 3.810e+00 ] 4.179e-01 9.116 < 2e-16 *x*x
age 6.922e-04] 1.321e-02 0.052 0.958229
dis -1.476e+00 ] 1.995e-01 -7.398 6.01e-13 *xx
rad 3.060e-01] 6.635e-02 4.613 5.07e-06 *xx
tax -1.233e-02 | 3.761e-03 -3.280 0.001112 =*x
ptratio -9.527e-01] 1.308e-01 =7.283 1.31e-12 *xx
black 9.312e-03 ] 2.686e-03 3.467 0.000573 *xx
lstat -5.248e-01] 5.072e-02] -10.347 < 2e-16 *xx*
Signif. codes: O “¥xn? 0,001 “=»%2°0.01 %2 0,06 %.2 0.1 % %2 1

Residual standard error: 4.745 on 492 degrees of freedom
Multiple R-Squared: 0.7406, Adjusted R-squared: 0.7338
F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16




Example

* Investing 1n two assets: suppose X and Y are the
returns of two assets

* These returns are observed every day:

(xl» Y1): T (xn: Yn)

Market Summary > Alphabet Inc Class A

2,812.18 uso

+736.41 (35.48%) 4 past year

Feb 9, 3:13 PM EST - Disclaimer

1D 5D ™ 6M YTD 1Y

Jun 2021

Mkt cap
P/E ratio
Div yield

Market Summary > Apple Inc

175.20 uso

%) 4 past year

Jun 2021

Mkt cap
P/E ratio
Div yield

SY

+ Follow

Max

Oct 2021

CDP score
52-wk high
52-wk low

+ Follow

175.34 USD Feb 9, 2022

Oct 2021

CDP score
52-wk high
52-wk low




Example

* A fixed amount of money to invest: & fraction on X and 1 — « fraction on'Y.
Expected return: aX + (1 — a)Y

0 Var(aX+(1—-a)Y)

o« =0

e Minimize variance: Solve & from the first order derivative
(exercise)
o—Cov(X,Y)

cs+o5—2Cov(X,Y)’
1s covariance between X and Y

* Optimum: 0¥ is variance of X, o¢ is variance of Y, Cov(X,Y)

* Can approximate these quantities Wlth empirical data

67 — Cov(X,Y)
6% + 62 — 2Cov(X,Y)

a =




Resampling

* Suppose we compute the estimate @ = 0.6. Do we have some
confidence about this? E.g., if we resample the observations,
would we get a wildly different & (say 0.1)?

* Here we have the joint distribution Pr(X,Y), let’s resample the n
observations




Resample the X, Y

Resample n observations
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Thought experiment

* Estimate & from each sample
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Thought experiment

* Standard error of & is approximated by the standard deviation of
@(1), 07(2)’ 07(3), &(4),
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Bootstrap

* In reality, we cannot resample the data. However, we can use the training
data set to approximate the joint distribution of X and Y

* Bootstrap: Resample the data by drawing n samples with replacement
(meaning that we allow repetitions in them) from the actual
observations




Z'!

Obs [ X |Y
1 43 |24
2 2.1 | 1.1
53 |28
f
Original Data (Z)

Obs | X Y
3 53 |28
1 43 |24
3 53 2.8
Obs | X Y
2 2.1 | 1.1
3 53 |28
1 43 |24
Obs | X Y
2.1 | 1.1
2.1 | 1.1
43 |24

Bootstrap

*1

A fixed amount of investment: @ on X and
1—aonVY

Estimate standard error
6% = Cov(X,Y)
- 62+ 6% —2Cov(X,Y)

A\

Use standard error of @*1, @*4, .-+, @*P

to approximate standard error of &



Bootstrap vs. resampling from the true distribution
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Quiz

* In bootstrap, how large is the resampled set?

* How many distinct samples are there in the resampled set (in
expectation)?




Lecture plan

e Subset selection




Example

Predict whether customers default on their credit card debt with 11 features:

* Income: Income in $1,000’s

* Limit: Credit limit

* Rating: Credit rating

* Cards: Number of credit cards

* Age: Age 1n years

* Education: Number of years of education

* Gender: A factor with levels Male and Female

 Student: A factor with levels No and Yes indicating the individual was a student

* Married: A factor with levels No and Yes indicating whether the individual was married

* Ethnicity: A factor with levels African American, Asian, and Caucasian indicating the
individual's ethnicity

* Balance: Average credit card balance in $




Subset selection

e What if not all of the features are useful? How would we select a subset
of them (say k)

* Naive solution: Compare all models with k predictors (and choose one
with smallest RSS)

* Recall that p is the number of predictors (k < p)
|

* There are (Z) =5 (5_ o) possible ways of choosing k predictors

* Doing this for every possible combination is too slow




Example

* Best model for a fixed number of predictors
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e Both RSS and R? improve as we increase k: Three features suffices




Best subset selection

* How could we find this best subset among 2¥ options?

* Cross-validation is one approach to estimate test error, but we still need
to enumerate 2% subsets, which are exponential in k




Forward stepwise selection

Step 1: No features (fit one model)

Step 2: Select the best model with one feature (fit p models)

Step 3: Given the model with one feature, select the best model with two features (fit p — 1 models)

Step 4: Given the model with two features, select the best model with three features (fit p — 2 models)

In each step, best is defined as having smallest RSS / MSE / highest R?

Select a single best model with the optimal number of predictors using cross-validation




Forward stepwise selection

Step 1: No features (fit one model)

Step 2: Select the best model with one feature (fit p models)

Step 3: Given the model with one feature, select the best model with two features (fit p — 1 models)

Step 4: Given the model with two features, select the best model with three features (fit p — 2 models)

Fit 1 +p+(p—1)++1=1+30p—k) =1+"2" models in total

Much fewer than (i) (exhaustive enumeration)




Summary: stepwise selection

Forward stepwise selection
* Start with a model with no predictors

* Add predictors to the model one-at-a-time

e Fit 1 + Zg;é(p —k)=1+ p(p;l) models: Much fewer than (i)

Backward stepwise selection is similar but in the reverse direction
* Start with a model with p predictors

* Remove the least useful feature, one at a time

p(p+1)

Fit 1 + models




