Supervised Machine Learning and
Learning Theory

Lecture 8: Decision trees and bagging

October 1, 2024




Warm-up questions

* Could you write down the cross-entropy loss?

* What 1s the pros and cons of forward stepwise selection vs. best subset
selection?

* Could you write down the objective of ridge regression in dimension p
(1.e., assume the input features are of dimension p)?

* Following up the above question, can you write down the objective of

LASSO?




Case study

* Suppose n = p and the predictors are X = Id,«,,

* Linear regression: minimizes Z?ﬂ(yj - B j)z

* Solution: B i =Y

* Ridge regression: minimizes Z?zl(yj —B)* + 2 Z?zl b j2

i

* Solution: ,BA;?A = Tax




Shrinkage via Ridge

* Linear regression coefficients: /; = ;

. , : 5R Yj
* Ridge regression coefficients: 5 jA =7 +]/1
. b b, _1
* Interpretation: Shrinks [f; by ——
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Why LLASSO shrinks model coetticients to zero

* Case study: Suppose n = p and matrix of predictors is X = Identity
* Linear regression: minimizes Z?ﬂ(yj - B j)z

* Solution: B i =Y
e LASSO: minimizes Z?zl(yj — ,Bj)z + AZ?zl‘ﬁj‘

e Solve ,Bj by minimizing (yj — ,6’]-)2 + Alﬁj|

(yi—A/2  if y; > /2
B, =1y +4/2 if y; <—=1/2
.0 if |y;| < /2




Why LLASSO shrinks model coetticients to zero

* Linear regression solution: [§; = ;

* LLASSO coefficients o
% — — t::z?Squares

(yi—A/2  if y; > A/2 s 5-

B =Ly +4/2 if y; <—-21/2 5 o

.0 if |y;| < /2 g m

* Interpretation: Hard thresholding e 7050005 10 15

Yj




Comparing Ridge and LLASSO

* Ridge regression: Shrinks by the same proportion ,é)lf — %

* LASSO: Hard thresholding at %, otherwise reduce by%
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e Elastic net




Elastic net

. Elastlc net combines LASSO with ridge, and minimizes

z(medvl By — Istat; - B)% + - (1 — ) - %u 1B,

* A = 0: tuning hyper-parameter
* o € |0,1]: tuning hyper-parameter
* a = 0: ridge

o = 1: LASSO




Role of a and A in elastic net

E(medvl Lo — Istat; - f1)* +A- (1 —«a) - '8?1+/1 | 54|

-a_03 A =5:pF =—-1.299; a=0.71=5pf =-1.107

alpha = 0.3, lambda =5 alpha = 0.7, lambda =5
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Role of a and A in elastic net

E(medvl Bo — Istat; - B*+1- (1 —a) -

-a_03A_20ﬁ1_—aBa

alpha = 0.3, lambda = 20

Istat

B il
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Choose o and 4 by cross-validation
* The procedure 1s the same for ridge and LLASSO
1. Choose a grid of « values and a grid of 1 values
2. Compute the cross-validation error for each (@, 1) value
3. Select the (o, 1) with the smallest cross-validation error

4. Refit the model using all observations and selected (&, 1)




Lecture plan

* Regression tree




Example

* Example: predict a baseball player’s salary Y;
* Years: The number of years played in the league

 Hit: The number of hits made in the previous year

* Regression tree consists of a series of splitting rules
* Years; < 4.5: predicted salary ¥; = 5.11
* Years; = 4.5 & Hits; < 117.5: predicted salary ¥, = 6.00
* Years; > 4.5 & Hits; > 117.5: predicted salary ¥; = 6.74

Years,< 4.5
I

Hits <[117.5

6.00 6.74




Example

* Regression tree segments the feature space to disjoint regions

238

R, = {X|Years; < 4.5}

R, = {X|Years; = 4.5, Hits; < 117.5}

117.5

Ry
R3; = {X|Years; > 4.5, Hits; > 117.5}

i)
T

24

Years




How to build a decision tree?

Two main steps
1. Partition the feature space into / distinct and non-overlapping regions, Ry, Ry, ***, R;

2. Make the same prediction for every observation in region R ik Mean of the training
observations in R g

Example: (Years;, Hits;, Y;)
+ Alan: (14, 81, 6.16)
o Al (2,37, 4.25)
* Andres: (2, 81, 4.32)
« Bill: (18, 168, 6.60)
* Brian: (14, 137, 6.80)
« Bob: (7, 49, 5.70)




How to build a decision tree?

Example
» Alan: (14, 81, 6.16)

. . 6.16 + 5.70
— . > . . ] —
+ Bill: (18, 168, 6.66) R, = {X|Years; = 4.5, Hits; < 117.5} ¥, 5
* Brian: (14, 137, 6.80) | 66 1 .80
» Bob: (7, 49, 5.70) R; = {X|Years; = 4.5, Hits; > 117.5} Tr, = 5




How to build a decision tree?

Two main steps

Partition the feature space into J distinct and non-ovetlapping regions, R, Ry, ***, R;

2
* Find boxes that minimize the RSS Zle ZiERj (yi — ij)

. )7Rj is the mean label value for the training observations in R;




15¢ cut point

* Select 1% cut point: Select a predictor X; and a cut point §
* Define the pair of half-planes Ry (j,s) = {X|X; < s} and R,(j,s) = {X|X; = s}

that minimize
> =) Y ik

I:x;€R1(J,s) i:x;€R5(j,s)

Years,< 4.5
[

RSS

Year 4 120.18

Z(yi —¥)? =207.15 | Year 4.5 115.06

: Year 6 133.30
Hits 110 163.75 o Hits <|117.5

Hits 120 164.53

6.00 6.74




Cut rule

Example: This cut point defines two regions

Years ;< 4.5
I

R, = {X|Years; > 4.5}

Hits <[117.5

5.11

6.00 6.74




28d cut point

* Select 2"¢ cut point: Select a region Ry, a predictor X; and a splitting point § with
the criterion X i <S produces the largest decrease in RSS

and R, = {X|Years > 4.5}

Year 105.85
R1 Hits 110 107.66
R4 Hits 120 108.88
7, | Yex 5.5 107.65
R, Hits 110 95.91 ——
, 5.11 '
R, Hits 117.5 95.18

RZ Hits 120 96.23 6.00 6.74




2nd ~ut rule

* [llustration: Combining both cut points

Hits

R

R, = {X|Years;
R; = {X|Years;

238

117.5

4.5

Ro

Years

24

>

>

4.5, Hits; < 117.5}
4.5, Hits; > 117.5}

Years,< 4.5
|

Hits <|117.5

Ty

6.00 6.74




Binary recursive search

* Select 3t cut point: Repeat the same

* Select a region Ry, a predictor X; and a splitting point S, such that splitting Ry with
the criterion X; < s produces the largest decrease in RSS

* Stopping rule: Terminate when there are few observations in each region




Overtitting

* The tree might be too complex: =
A leaf node may only contain a
handful of data points
RBI 4 60.5 Hits <[117.5
Putouts < 82 Years|< 3.5
5-4,87— Years|< 3.5 5-3,94_?89
4.622 5.183
Walks |< 43.5 Walks |< 52.5

Runs E 47.5 | RBI 4 80.5
6.407 Years|< 6.5
6.015 5571 6.549 = 280

6.459 7.007




Reduce overtitting

* Proposed solution: Add a penalty term to quantify the decision tree’s
complexity

* Cost complexity pruning
7] 5
min » > (vi=9s,) +all

j=1 iERj

* |T|: number of terminal nodes of the tree T

* If a is larger, then |T| tends to be
A. larger

B. smaller




How do we reduce overfitting?

* Cost complexity pruning

T

mmZZ yR +a|T|

j= 1lERJ

* |T|: number of terminal nodes of the tree T
* If a is larger, then |T| tends to be smaller

* When a = 0, we select the full tree (T = T)
* When a = oo, we select the null tree (|T| = 0)

* For 0 < ay < ay < -+ < ayy (the corresponding trees are Ty, Ty, T, *+, T,
choose the optimal & (the optimal T;) by cross validation




Select

* Ten-fold cross validation
* For a range of values o, a3, -+, &y, construct the corresponding sequence of
trees T(k) T(k) T(k)
1 42 yIm
* The sequence of trees vary with the hold-out fold; Make prediction for each

. k
region in each tree Ti( )

* For each tree Ti(k), calculate the RSS on the hold-out fold k

* Select the parameter @ that minimizes the average error across ten folds




Example

* Unpruned tree vs. pruned tree with cost complexity tuning

117.5

Years < 4.5
T
RBI 4 60.5 Hits <
Putouts < 82 Years|< 3.5
Years|< 3.5
5.487 5.394 6.189
4.622 5.183
Walks |< 43.5
Runs E 47.5
6.407
6.015 5.571

Walks|< 52.5

| RBI 4805
6.549 Years|< 6.5
7.289

6.459 7.007

511

Years,< 4.5
I

Hits <

117.5

6.00

6.74



Cross-validation results

Years, < 4.5
I

5.11

Hits <

117.5

6.00

6.74
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Lecture plan

e Classification tree




Classification tree

* Classification trees work similar to regression trees
1. Partition the feature space into J distinct and non-ovetlapping regions, R, Ry, ***, R;

2. Make the same prediction for every observation in region R ' Mean of the training
observations in R g

* Step 1: Minimize classification error rate

* Step 2: Predict response by majority vote, pick the most common class in a region




Metrics

* The 0—1 loss or misclassification rate in region m: ;¢ Ry, 1(y; # )7Rm)
¢ Example: yRm = red, ZiERm 1(yl * yRm) =4

* The Gini index in region m: Gy, = e 1 Pk (1 — Pimr)
A 6
* Pmred = 10 0.6
A 4
* Pmgreen = 75 = 0.4
* G, =06(1-06)+04(1—-0.4)=0.48 O
O
O
O
® O

Region m




Metrics

* The entropy in region m: D, = — Z’,§=1 Dk 108 Dk

* Example:
* Pmred =75 = 0.6
Pm,green = 1—0 =04
D, = —0.6l0g 0.6 — 0.410g 0.4 = 0.673
* Example:
* Pmred =75 = 0.9
Pm,green = 1—0 =01

* D,, =—091l0og0.9 —-0.1log0.1=0.461

* D,, is also a measure of purity: Dy, is small if all Pp,’s are
close to zero or one

Region m

Reotion m



Decision boundaries: linear model vs. decision tree
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* Bagging




Decision tree has a high variance

* Example: Predicting a baseball player’s salary

CHits < 417
1

CRuns|

<90.5

CREBI

o

5.644

<24.5

=

4.642

Walks < 61

PutOuts < 211 CWalks|< 415.5

5.545 Hits i 95:|-5 6.672  7.205

5942 6382 0827

Subsample 1

CAtBat,< 1283
I

CRBI K 55.5 CRBI § 307.5
4.564 5.254 Hits;wst_s <1565 AtBat § 377.5
5.842 6.303 6.053 5.433 AtBat|< 603

Y?aﬁ'i%?é'—l
6.136
6.921 6.501 [-227

Subsample 2



Bagging
* Bagging 1s a way to reduce such variance

* Idea: Bootstrap aggregation

* Example: Estimate the mean of Z

7, 1.03 )
Z =191
7, 1.56
0% 1
Z3 257 Var(Z) = — == = 0.2
Z, 2.13 n
7. 2 47 Data generating process: Z~N(2,1)




Toy example

* Suppose we have many independent sampling of datasets

Dataset 1 Dataset 2 Dataset 3 Dataset 4
Zf) 1.03 Z§2> 3.44 Z§3> 013 Z§4> 0.94
Zél) 1.56 Z§2> 3.06 Z§3> 2.28 Z§4> 1.84
Z§1> 2.37 ngZ) 2.42 Z§3> 2.09 Z§4> 1.92

(1) (2) 3) (4)
z¢ 2.13 z¢ 2.40 z¢ 2.72 z! 2.49
Zél) 2.47 Z§2) -0.78 Z§3) 1.40 Z§4) 237

7MW =191 73 =211 73) =167 7 =191

Var(Z(D) = 0.2 Var(Z®) = 0.2 Var(Z®) = 0.2 Var(Z®) = 0.2

_ _ _ _ _ _ 0.2
Zagg = (@D +Z@ +7® +7®) /4 = 1.90 Var(Zagg) = = 0.05




Toy example

* In practice, we only have one training dataset

* How can we create many datasets? Idea: Bootstrap

Sample #1 7, 1.03 Sample #3 Ze 2 47

Z, 1.56 Z, 1.56

Zq 1.03 Z3 2.37

21 105 Sampling with Zs 247 Z 1.56

Z, 1.56 replacement Z, 213 7, 1.03
Zs 2.37 —

Z4 213 Sample #2 Z, 213 Sample #4 7 2.47

Zs 2.47 Z 1.03 Zs 2.37

Zs 2.37 Zs 2.37

Z, 1.56 A 1.03

Z, 2.37 Z, 1.56




Bagging to reduce variance

* Estimate the mean on each bootstrap sampling set

Sample #1 74 1.03 Sample #3 8 247
Z, 1.56 Z, 1.56
Zs 2.47 Z1) =193 Z3 2.37 Z(3) =1.80
Zs 2.47 Zy 1.56
Zy 2.13 Z4 1.03
Sample #2 Zy 2.13 Sample #4 Zs 2.47
Z4 1.03 Z3 2.37
Z3 2.37 Z(2) =1.89 Zs 2.37 Z#) =196
Zy 1.56 A 1.03
Z3 2.37 Z, 1.56




Toy example

* Average all estimates

7MW =193 72 =1.89 Z3) =1.80 7® =196

7 L 7@ 473 174
4

= 1.90

* This 1s called bagging (Bootstrap aggregating)
* Bagging amounts to averaging the fits from B independent data sets, which

would reduce the variance by a factor =




Bagging for decision trees

* Estimate a decision tree model f(x) using bootstrap

X1 Y
X3 Y,
X3 £
% Yy
Xs Ys

Sample #1

Sampling with
replacement

—
Sample #2

X1 Il
% ¢
X1 il
X Ys
Xy Y,
Xy Y,
X1 Il
X3 Y3
% ¢
X3 £

Sample #3

Sample #4

Xs Ys
X3 Y
X3 Y3
X, Y
Xq Y
Xs Ys
X3 Y3
X3 Y3
X Y
X; Y




Bagging for decision trees

* Estimate a decision tree model f(x) using bootstrap

Sample #1
X1 Y
X2 ¢
X4 Y
Xs Ys
X, Y,
Sample #2
Xy Y,
X1 il
X3 Y3
X3 ¢
X3 Y

1)

555555555555

Sample #3
Xs Ys
X7 Y
X3 Y3
X7 Y
X1 Y
Sample #4
Xs Ys
X3 Y3
X3 Y
X1 Y
X7 Y

300

f2)




