Supervised Machine Learning and Learning Theory

Lecture 8: Decision trees and bagging

October 1, 2024

Warm-up questions

• Could you write down the cross-entropy loss?

• What is the pros and cons of forward stepwise selection vs. best subset selection?

• Could you write down the objective of ridge regression in dimension p (i.e., assume the input features are of dimension p)?

• Following up the above question, can you write down the objective of LASSO?

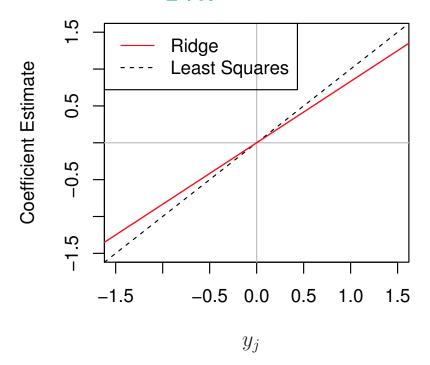
Case study

• Suppose n = p and the predictors are $X = \mathrm{Id}_{p \times p}$

- Linear regression: minimizes $\sum_{j=1}^{p} (y_j \beta_j)^2$
 - Solution: $\hat{\beta}_j = y_j$
- Ridge regression: minimizes $\sum_{j=1}^{p} (y_j \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$
 - Solve β_j by minimizing $(y_j \beta_j)^2 + \lambda \beta_j^2$
 - Solution: $\hat{\beta}_{j,\lambda}^R = \frac{y_j}{1+\lambda}$

Shrinkage via Ridge

- Linear regression coefficients: $\hat{\beta}_j = y_j$
- Ridge regression coefficients: $\hat{\beta}_{j,\lambda}^R = \frac{y_j}{1+\lambda}$
- Interpretation: Shrinks $\hat{\beta}_j$ by $\frac{1}{1+\lambda}$



Why LASSO shrinks model coefficients to zero

- Case study: Suppose n = p and matrix of predictors is X = Identity
- Linear regression: minimizes $\sum_{j=1}^{p} (y_j \beta_j)^2$
 - Solution: $\hat{\beta}_i = y_i$
- **LASSO**: minimizes $\sum_{j=1}^{p} (y_j \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$
 - Solve β_j by minimizing $(y_j \beta_j)^2 + \lambda |\beta_j|$

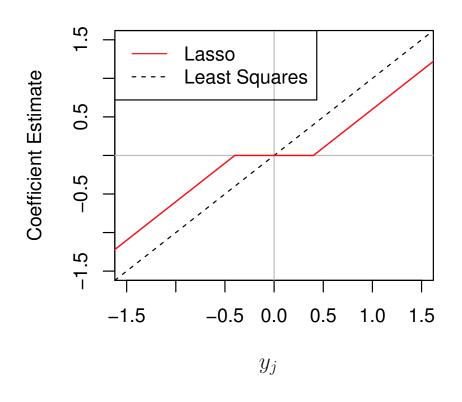
$$\hat{\beta}_{j,\lambda}^{L} = \begin{cases} y_j - \lambda/2 & \text{if } y_j > \lambda/2 \\ y_j + \lambda/2 & \text{if } y_j < -\lambda/2 \\ 0 & \text{if } |y_j| < \lambda/2 \end{cases}$$

Why LASSO shrinks model coefficients to zero

- Linear regression solution: $\hat{\beta}_j = y_j$
- LASSO coefficients

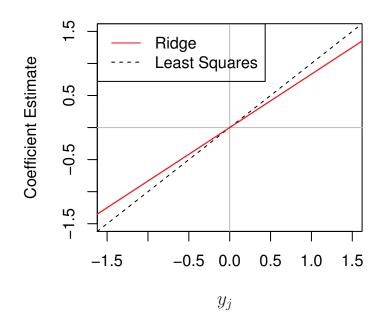
$$\hat{\beta}_{\lambda}^{L} = \begin{cases} y_{j} - \lambda/2 & \text{if } y_{j} > \lambda/2 \\ y_{j} + \lambda/2 & \text{if } y_{j} < -\lambda/2 \\ 0 & \text{if } |y_{j}| < \lambda/2 \end{cases}$$

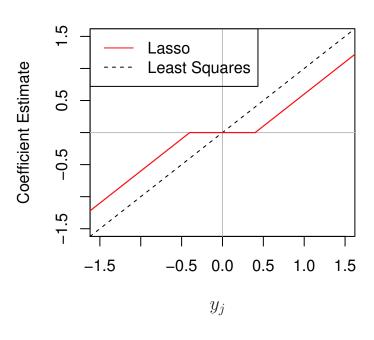
• Interpretation: Hard thresholding



Comparing Ridge and LASSO

- **Ridge regression**: Shrinks by the same proportion $\hat{\beta}_{\lambda}^{R} = \frac{y_{j}}{1+\lambda}$
- **LASSO**: Hard thresholding at $\frac{\lambda}{2}$, otherwise reduce by $\frac{\lambda}{2}$





Lecture plan

• Elastic net

Elastic net

• Elastic net combines LASSO with ridge, and minimizes

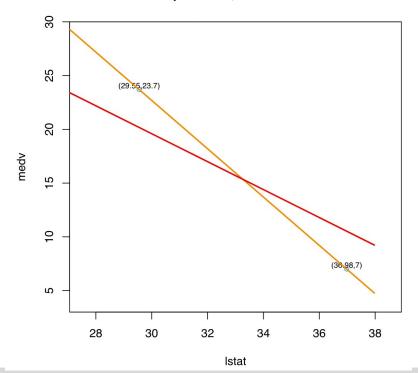
$$\sum_{i=1}^{n} (medv_i - \beta_0 - lstat_i \cdot \beta_1)^2 + \lambda \cdot (1 - \alpha) \cdot \frac{\beta_1^2}{2} + \lambda \cdot \alpha \cdot |\beta_1|$$

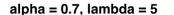
- $\lambda \ge 0$: tuning hyper-parameter
- $\alpha \in [0,1]$: tuning hyper-parameter
 - $\alpha = 0$: ridge
 - $\alpha = 1$: LASSO

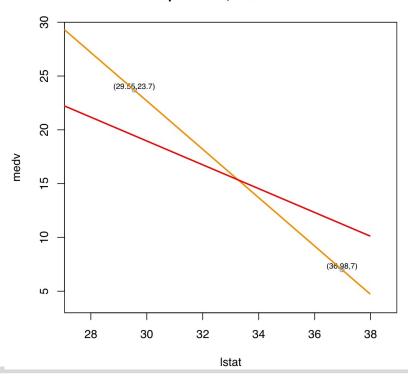
Role of α and λ in elastic net

$$\sum_{i=1}^{n} (medv_i - \beta_0 - lstat_i \cdot \beta_1)^2 + \lambda \cdot (1 - \alpha) \cdot \frac{\beta_1^2}{2} + \lambda \cdot \alpha \cdot |\beta_1|$$
• $\alpha = 0.3, \lambda = 5$: $\hat{\beta}_1^E = -1.299$; $\alpha = 0.7, \lambda = 5$: $\hat{\beta}_1^E = -1.107$

$$\alpha = 0.7, \lambda = 5: \hat{\beta}_1^E = -1.107$$





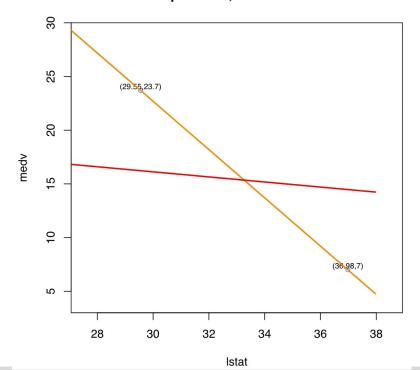


Role of α and λ in elastic net

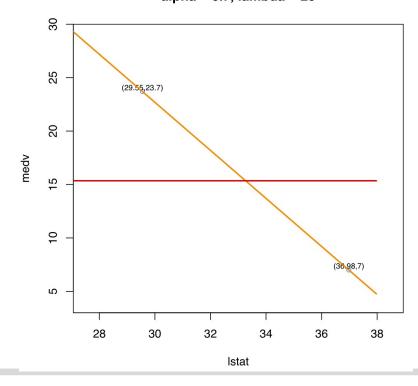
$$\sum_{i=1}^{n} (medv_{i} - \beta_{0} - lstat_{i} \cdot \beta_{1})^{2} + \lambda \cdot (1 - \alpha) \cdot \frac{\beta_{1}^{2}}{2} + \lambda \cdot \alpha \cdot |\beta_{1}|$$
• $\alpha = 0.3, \lambda = 20$: $\hat{\beta}_{1}^{E} = -0.236$; $\alpha = 0.7, \lambda = 20$: $\hat{\beta}_{1}^{E} = 0$

$$\alpha = 0.7, \lambda = 20$$
: $\hat{\beta}_1^E = 0$





alpha = 0.7, lambda = 20



Choose α and λ by cross-validation

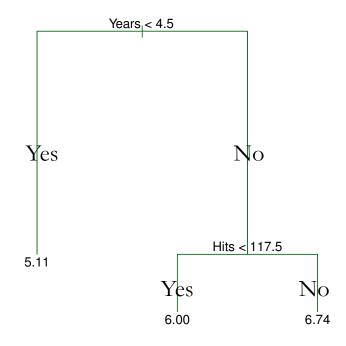
- The procedure is the same for ridge and LASSO
 - 1. Choose a grid of α values and a grid of λ values
 - 2. Compute the cross-validation error for each (α, λ) value
 - 3. Select the (α, λ) with the smallest cross-validation error
 - 4. Refit the model using all observations and selected (α, λ)

Lecture plan

• Regression tree

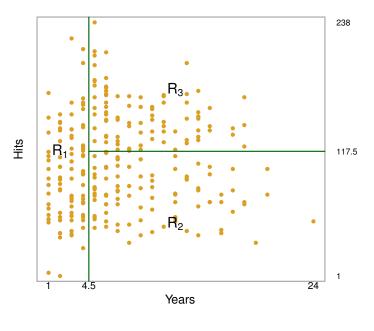
Example

- Example: predict a baseball player's salary Y_i
 - Years: The number of years played in the league
 - Hit: The number of hits made in the previous year
- Regression tree consists of a series of splitting rules
 - Years_i < 4.5: predicted salary $\hat{Y}_i = 5.11$
 - Years_i \geq 4.5 & Hits_i < 117.5: predicted salary $\hat{Y}_i = 6.00$
 - Years_i \geq 4.5 & Hits_i \geq 117.5: predicted salary $\hat{Y}_i = 6.74$



Example

• Regression tree segments the feature space to disjoint regions



$$R_1 = \{X | Years_i < 4.5\}$$

$$R_2 = \{X | \text{Years}_i \ge 4.5, \text{Hits}_i < 117.5\}$$

$$R_3 = \{X | \text{Years}_i \ge 4.5, \text{Hits}_i \ge 117.5\}$$

How to build a decision tree?

Two main steps

- 1. Partition the feature space into J distinct and non-overlapping regions, R_1 , R_2 , \cdots , R_J
- 2. Make the **same** prediction for every observation in region R_j : Mean of the training observations in R_j

Example: (Years_i, Hits_i, Y_i)

- Alan: (14, 81, 6.16)
- Al: (2, 37, 4.25)
- Andres: (2, 81, 4.32)
- Bill: (18, 168, 6.66)
- Brian: (14, 137, 6.80)
- Bob: (7, 49, 5.70)

How to build a decision tree?

Example

- Alan: (14, 81, 6.16)
- Al: (2, 37, 4.25)
- Andres: (2, 81, 4.32)
- Bill: (18, 168, 6.66)
- Brian: (14, 137, 6.80)
- Bob: (7, 49, 5.70)

$$R_1 = \{X | \text{Years}_i < 4.5\}$$
 $\hat{Y}_{R_1} = \frac{4.25 + 4.32}{2}$

$$R_2 = \{X | \text{Years}_i \ge 4.5, \text{Hits}_i < 117.5\}$$
 $\hat{Y}_{R_2} = \frac{6.16 + 5.70}{2}$

$$R_3 = \{X | \text{Years}_i \ge 4.5, \text{Hits}_i \ge 117.5\}$$
 $\hat{Y}_{R_3} = \frac{6.66 + 6.80}{2}$

How to build a decision tree?

Two main steps

Partition the feature space into J distinct and non-overlapping regions, R_1, R_2, \dots, R_J

- Find boxes that minimize the RSS $\sum_{j=1}^{J} \sum_{i \in R_j} (y_i \hat{y}_{R_j})^2$
- \hat{y}_{R_j} is the mean label value for the training observations in R_j

1st cut point

- Select 1st cut point: Select a predictor X_i and a cut point s
 - Define the pair of half-planes $R_1(j,s) = \{X | X_j < s\}$ and $R_2(j,s) = \{X | X_j \ge s\}$ that minimize

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

	X_{j}	S	RSS
	Year	4	120.18
$\sum (y_i - \bar{y})^2 = 207.15$	Year	4.5	115.06
i	Year	6	133.30
	Hits	110	163.75
	Hits	120	164.53

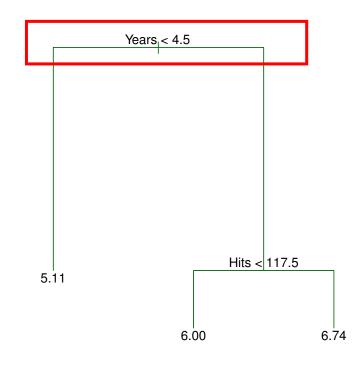


Cut rule

Example: This cut point defines two regions

$$R_1 = \{X | \text{Years}_i < 4.5\}$$

 $R_2 = \{X | \text{Years}_i \ge 4.5\}$

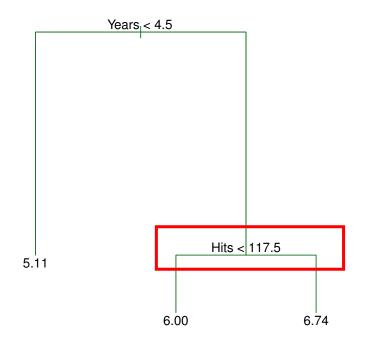


2nd cut point

• Select 2nd cut point: Select a region R_k , a predictor X_j and a splitting point s with the criterion $X_j < s$ produces the largest decrease in RSS

• $R_1 = \{X \text{Years} <$	4.5 } and $R_2 =$	$\{X \text{Years} \ge A\}$	4.5}
--------------------------------	---------------------	------------------------------	------

R_k	X_{j}	S	RSS
R_1	Year	3.5	105.85
R_1	Hits	110	107.66
R_1	Hits	120	108.88
R_2	Year	5.5	107.65
R_2	Hits	110	95.91
R_2	Hits	117.5	95.18
R_2	Hits	120	96.23

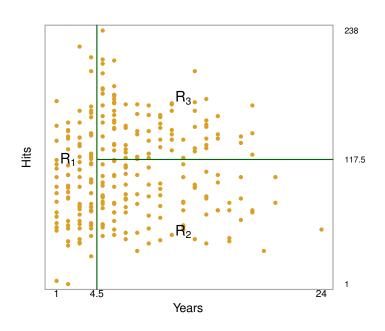


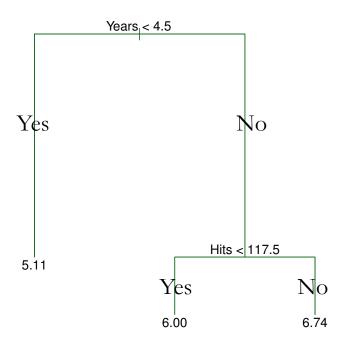
2nd cut rule

• Illustration: Combining both cut points

$$R_1 = \{X | \text{Years}_i < 4.5\}$$

 $R_2 = \{X | \text{Years}_i \ge 4.5, \text{Hits}_i < 117.5\}$
 $R_3 = \{X | \text{Years}_i \ge 4.5, \text{Hits}_i \ge 117.5\}$





Binary recursive search

• Select 3rd cut point: Repeat the same

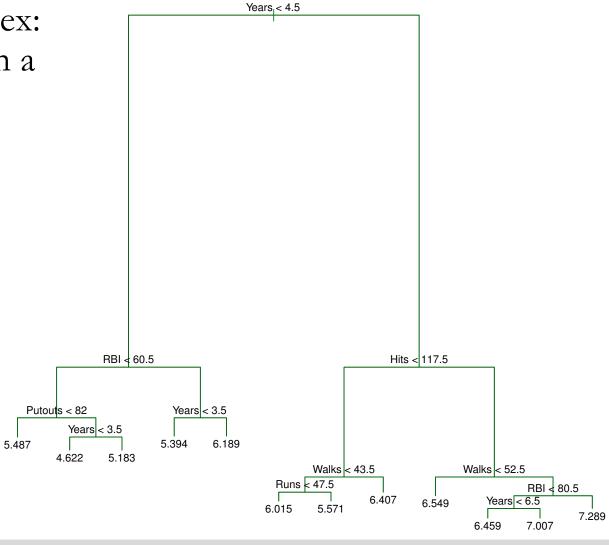
• Select a region R_k , a predictor X_j and a splitting point s, such that splitting R_k with the criterion $X_j < s$ produces the largest decrease in RSS

•

• Stopping rule: Terminate when there are few observations in each region

Overfitting

• The tree might be too complex: A leaf node may only contain a handful of data points



Reduce overfitting

- **Proposed solution**: Add a penalty term to quantify the decision tree's complexity
- Cost complexity pruning

$$\min \sum_{j=1}^{|T|} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2 + \alpha |T|$$

- |T|: number of terminal nodes of the tree T
- If α is larger, then |T| tends to be _____
 - A. larger
 - B. smaller

How do we reduce overfitting?

Cost complexity pruning

$$\min \sum_{j=1}^{|T|} \sum_{i \in R_j} \left(y_i - \hat{y}_{R_j} \right)^2 + \alpha |T|$$

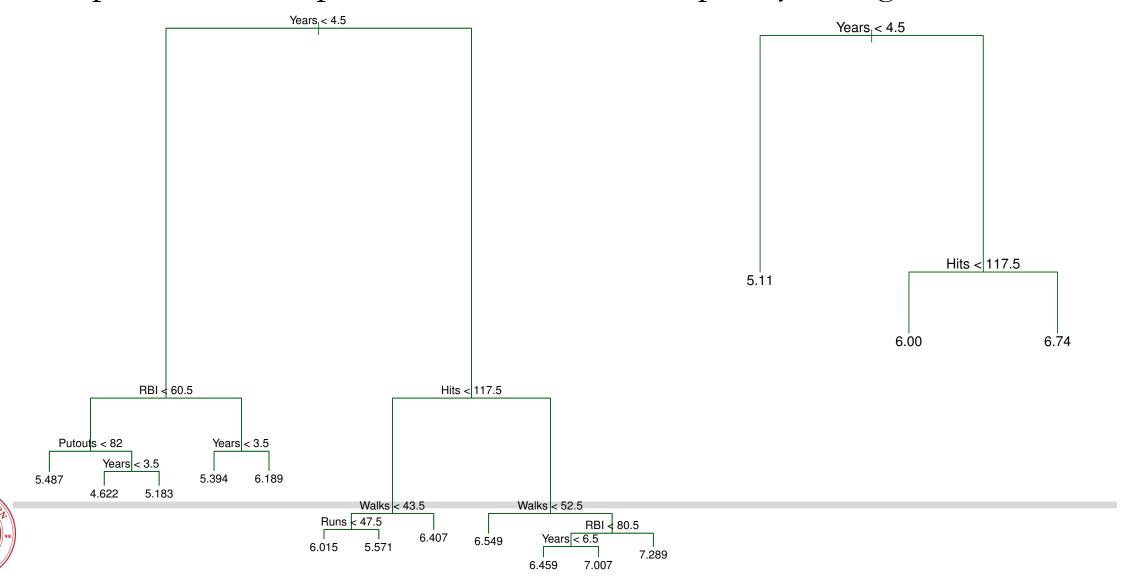
- |T|: number of terminal nodes of the tree T
- If α is larger, then |T| tends to be smaller
- When $\alpha = 0$, we select the full tree $(T = T_0)$
- When $\alpha = \infty$, we select the null tree (|T| = 0)
- For $0 < \alpha_1 < \alpha_2 < \dots < \alpha_m$ (the corresponding trees are $T_0, T_1, T_2, \dots, T_m$), choose the optimal α (the optimal T_i) by cross validation

Select α

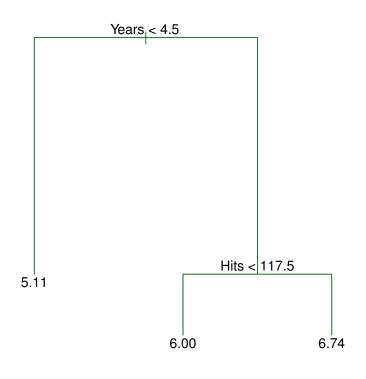
- Ten-fold cross validation
 - For a range of values $\alpha_1, \alpha_2, \cdots, \alpha_m$, construct the corresponding sequence of trees $T_1^{(k)}, T_2^{(k)}, \cdots, T_m^{(k)}$
 - The sequence of trees vary with the hold-out fold; Make prediction for each region in each tree $T_i^{(k)}$
 - For each tree $T_i^{(k)}$, calculate the RSS on the hold-out fold k
 - Select the parameter α that minimizes the average error across ten folds

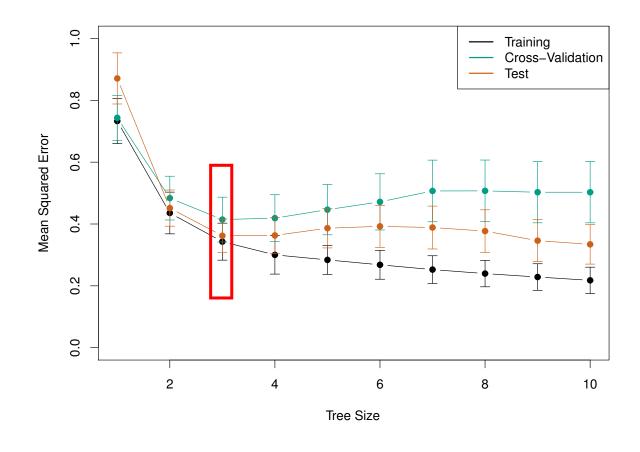
Example

• Unpruned tree vs. pruned tree with cost complexity tuning



Cross-validation results





Lecture plan

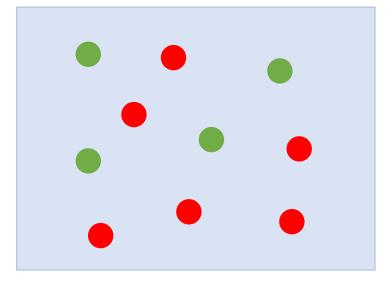
• Classification tree

Classification tree

- Classification trees work similar to regression trees
 - 1. Partition the feature space into J distinct and non-overlapping regions, R_1 , R_2 , \cdots , R_J
 - 2. Make the **same** prediction for every observation in region R_j : Mean of the training observations in R_j
- Step 1: Minimize classification error rate
- Step 2: Predict response by majority vote, pick the most common class in a region

Metrics

- The 0–1 loss or misclassification rate in region m: $\sum_{i \in R_m} 1(y_i \neq \hat{y}_{R_m})$
 - Example: $\hat{y}_{R_m} = \text{red}, \sum_{i \in R_m} 1(y_i \neq \hat{y}_{R_m}) = 4$
- The Gini index in region m: $G_m = \sum_{k=1}^K \hat{p}_{mk} (1 \hat{p}_{mk})$
 - $\hat{p}_{m,\text{red}} = \frac{6}{10} = 0.6$
 - $\hat{p}_{m,\text{green}} = \frac{4}{10} = 0.4$
 - $G_m = 0.6(1 0.6) + 0.4(1 0.4) = 0.48$



Region m

Metrics

- The entropy in region m: $D_m = -\sum_{k=1}^K \hat{p}_{mk} \log \hat{p}_{mk}$
- Example:

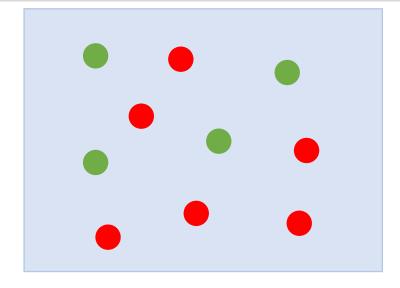
•
$$\hat{p}_{m,\text{red}} = \frac{6}{10} = 0.6$$

- $\hat{p}_{m,\text{green}} = \frac{4}{10} = 0.4$
- $D_m = -0.6 \log 0.6 0.4 \log 0.4 = 0.673$
- Example:

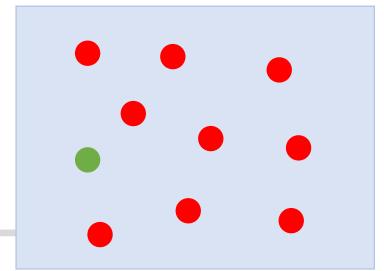
•
$$\hat{p}_{m,\text{red}} = \frac{9}{10} = 0.9$$

•
$$\hat{p}_{m,\text{green}} = \frac{1}{10} = 0.1$$

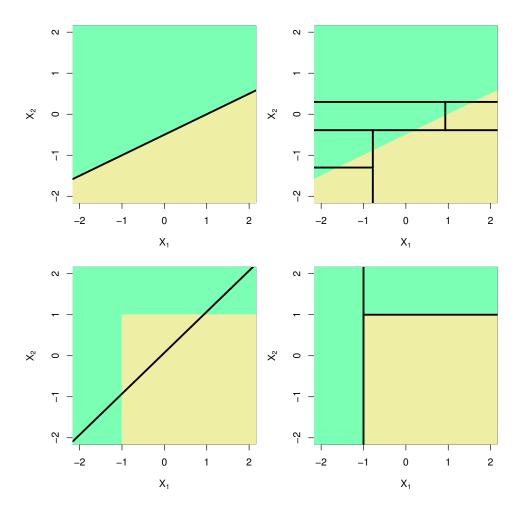
- $D_m = -0.9 \log 0.9 0.1 \log 0.1 = 0.461$
- D_m is also a measure of purity: D_m is small if all \hat{p}_{mk} 's are close to zero or one



Region *m*



Decision boundaries: linear model vs. decision tree

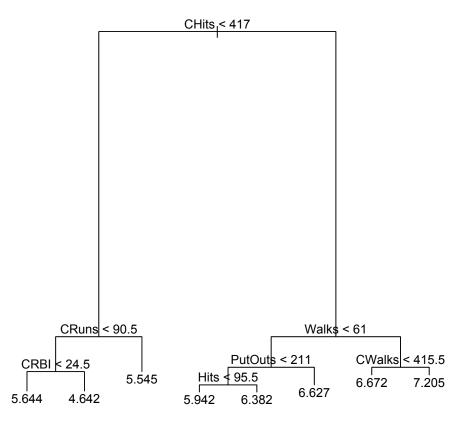


Lecture plan

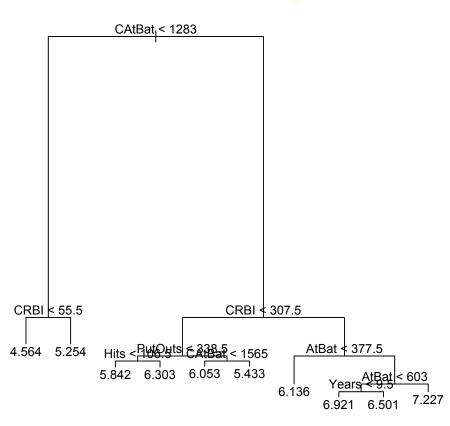
• Bagging

Decision tree has a high variance

- Example: Predicting a baseball player's salary
 - Split the training data into two equal-sized parts at random creates disparity



Subsample 1



Subsample 2

Bagging

- Bagging is a way to reduce such variance
- Idea: Bootstrap aggregation
- Example: Estimate the mean of Z

Z_1	1.03
Z_2	1.56
Z_3	2.37
Z_4	2.13
Z_5	2.47

$$\bar{Z} = 1.91$$

$$Var(\bar{Z}) = \frac{\sigma^2}{n} = \frac{1}{5} = 0.2$$

Data generating process: $Z \sim N(2,1)$

Toy example

• Suppose we have many independent sampling of datasets

Dataset 1

$Z_1^{(1)}$	1.03
$Z_2^{(1)}$	1.56
$Z_3^{(1)}$	2.37
$Z_4^{(1)}$	2.13
$Z_5^{(1)}$	2.47

Dataset 2

$Z_1^{(2)}$	3.44
$Z_2^{(2)}$	3.06
$Z_3^{(2)}$	2.42
$Z_4^{(2)}$	2.40
$Z_5^{(2)}$	-0.78

$$\bar{Z}^{(1)} = 1.91$$

 $Var(\bar{Z}^{(1)}) = 0.2$

$$\bar{Z}^{(2)} = 2.11$$

Var $(\bar{Z}^{(2)}) = 0.2$

$$\bar{Z}_{agg} = (\bar{Z}^{(1)} + \bar{Z}^{(2)} + \bar{Z}^{(3)} + \bar{Z}^{(4)})/4 = 1.90$$

Dataset 3

$Z_1^{(3)}$	-0.13
$Z_2^{(3)}$	2.28
$Z_3^{(3)}$	2.09
$Z_4^{(3)}$	2.72
$Z_5^{(3)}$	1.40

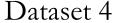
$$\bar{Z}^{(3)} = 1.67$$

Var $(\bar{Z}^{(3)}) = 0.2$

$$\bar{Z}^{(3)} = 1.67$$

Var $(\bar{Z}^{(3)}) = 0.2$

$$\operatorname{Var}(\bar{Z}_{agg}) = \frac{0.2}{4} = 0.05$$



$Z_1^{(4)}$	0.94
$Z_2^{(4)}$	1.84
$Z_3^{(4)}$	1.92
$Z_4^{(4)}$	2.49
$Z_5^{(4)}$	2.37

 $\bar{Z}^{(4)} = 1.91$

 $Var(\bar{Z}^{(4)}) = 0.2$

Toy example

- In practice, we only have one training dataset
- How can we create many datasets? Idea: Bootstrap

Z_1	1.03
Z_2	1.56
Z_3	2.37
Z_4	2.13
Z_5	2.47

Sampling with replacement

Sample #1	Z_1	1.03
	Z_2	1.56
	Z_1	1.03
ith	Z_5	2.47
t	Z_4	2.13

Z_4	2.13
Z_1	1.03
Z_3	2.37
Z_2	1.56
Z_3	2.37
	$egin{array}{c} Z_1 \ Z_3 \ Z_2 \ \hline \end{array}$

#3	Z_5	2.47
	Z_2	1.56
	Z_3	2.37
	Z_2	1.56
	Z_1	1.03

Sample

Sample #4	Z_5	2.47
	Z_3	2.37
	Z_3	2.37
	Z_1	1.03
	Z_2	1.56

Bagging to reduce variance

• Estimate the mean on each bootstrap sampling set

Sample #1

Z_1	1.03
Z_2	1.56
Z_5	2.47
Z_5	2.47
Z_4	2.13

Sample #3

$$\bar{Z}^{(1)} = 1.93$$

Z_5	2.47
Z_2	1.56
Z_3	2.37
Z_2	1.56
Z_1	1.03

 $\bar{Z}^{(3)} = 1.80$

Sample #2

Z_4	2.13
Z_1	1.03
Z_3	2.37
Z_2	1.56
Z_3	2.37

Sample #4

$$\bar{Z}^{(2)} = 1.89$$

Z_5	2.47
Z_3	2.37
Z_3	2.37
Z_1	1.03
Z_2	1.56

$$\bar{Z}^{(4)} = 1.96$$

Toy example

• Average all estimates

$$\bar{Z}^{(1)} = 1.93$$

$$\bar{Z}^{(2)} = 1.89$$

$$\bar{Z}^{(1)} = 1.93$$
 $\bar{Z}^{(2)} = 1.89$ $\bar{Z}^{(3)} = 1.80$ $\bar{Z}^{(4)} = 1.96$

$$\bar{Z}^{(4)} = 1.96$$

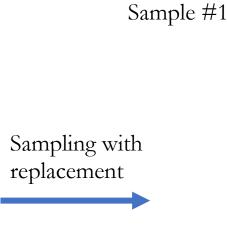
$$\frac{\bar{Z}^{(1)} + \bar{Z}^{(2)} + \bar{Z}^{(3)} + \bar{Z}^{(4)}}{4} = 1.90$$

- This is called **bagging** (Bootstrap **agg**regating)
 - Bagging amounts to averaging the fits from B independent data sets, which would reduce the variance by a factor $\frac{1}{R}$

Bagging for decision trees

• Estimate a decision tree model f(x) using bootstrap

X_1	Y_1
X_2	Y_2
X_3	Y_3
X_4	Y_4
X_5	Y_5



1	X_1	Y_1
	X_2	Y_2
	X_1	Y_1
	X_5	Y_5
	X_4	Y_4

Sample #2	X_4	Y_4
	X_1	Y_1
	X_3	Y_3
	X_2	Y_2
	X_3	Y_3

Sample #3	X_5	Y_5
	X_2	Y_2
	X_3	Y_3
	X_2	Y_2
	X_1	Y_1

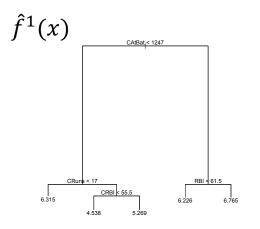
Sample #4	X_5	Y_5
	X_3	Y_3
	X_3	Y_3
	X_1	Y_1
	X_2	Y_2

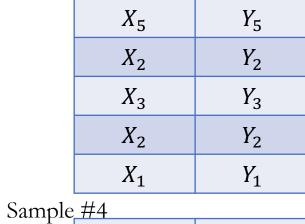
Bagging for decision trees

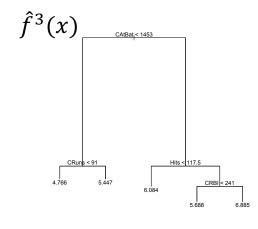
Sample #3

• Estimate a decision tree model f(x) using bootstrap

Sample #1				
	X_1	Y_1		
	X_2	Y_2		
	X_1	<i>Y</i> ₁		
	<i>X</i> ₅	Y_5		
	X_{4}	Y_{Δ}		







npie	<i>++2</i>	
1	X_4	Y_4
	X_1	Y_1
	X_3	Y_3
	X_2	Y_2
	X_3	Y_3



++4	
X_5	Y_5
X_3	Y_3
X_3	Y_3
X_1	Y_1
X_2	Y_2
	X_3 X_3 X_1

