Supervised Machine Learning and
Learning Theory

Lecture 11: Introduction to neural networks

October 11, 2024

Warm-up questions

* For bagging and random forests, how do we run cross-validation, and compute the
cross-validation error?

* A: After bootstrap there are ~37% data left, we use that as the holdout set to compute CV error

* What 1s the advantage of random forests compared to bagging?
* A: RF captures more dependencies of feature subsets due to its sampling of features during
construction

* What are the key design parameters in random forests? And how should we adjust
them?

* A: # trees, # features (or columns) per sample, depth; we adjust them with CV

* What about gradient boosted trees compared to random forests? Also describe their
differences

* A: Gradient boosted trees are sequential while RFs are parallel; Gradient boosted trees are
deterministic, and each tree only has few splits (unlike RFs where a tree can have many splits)

X1 Y,
X3 Y
X3 Y
X4 Y
X5 Yy
10 CABate 1452

5.0

6.464

Gradient boosting

rt <Y —Af1(X)

X4 i
X ry
X3 r3
X4 7y
Xs s
fz) Assists < 2225

0.04544

-0.1642

rf e —2Af2(X)

FOO =Af100) + Af2(x) + +Af3(x) + -+ Af B (x)

X1 r{
X 7‘22
X3 rs
Xy 7”42
Xs s
f"3 (%) RBI < 14.5

0.29520

-0.0

AdaBoost

* Another way of boosting: suppose Y € {—1,1}

Initial weight Error = %2 I(f(Xi) £Y)) = g
X, Y, 1/5 l
X7 Y, 1/5 1 log 1—Total Error _ 1 log 1-2/5 _ 0.088
X3 Y3 1/5 2 Total Error 2 2/5
X, Y, 1/5
Xs Y 1/5
Fitted tree f1(x) Increase sample weight for the sample that was incorrectly classitied

Correctly predict all samples besides Y and Y5~ Decrease sample weight for the sample that was correctly classitied

AdaBoost

1. 1-—Total Error 1 1—-2/5

Initial weight Elog Total Error Elog 275 = 0.088
i h ik Increase the sample weight for the sample that was incorrectly classified
X, Y, 1/5
X5 Ys 1/5 New sample weight = sample weightX exp(Amount of stay)
X, Y, 1/5 New sample weight = % X exp(Amount of stay) = 0.2184
Xs Y 1/5
Decrease the sample weight for the sample that was correctly classified
Fitted tree f1(x)

Correctly predict all samples besides Y3 and Y New sample weight = sample weightX exp(—Amount of stay)

1
New sample weight = EX exp(—Amount of stay) = 0.1831

AdaBoost

Initial weight New weight
X3 Y; 1/5 X3 Y; 0.1831
X5 Y, 1/5 Update weight X5 Y, 0.1831
X4 Y, 1/5 X4 Y, 0.1831
X5 Ys 1/5 X5 Ye 0.2184
- F1
Fitted tree f7(x) Sum of the weights = 0.9862 # 1

Correctly predict all samples besides Y3 and Y5

AdaBoost

Initial weight New weight
X, Y, 1/5 X, Y, 0.1831/0.9862
X, Y, 15 | Uodate weight X, Y, 0.1831,/0.9862
X Y, 1/5 | ey | X Y, 0.2184/0.9862 | el
X, Y, 1/5 X, Y, 0.1831/0.9862
X Y, 1/5 X Y, 0.2184/0.9862
Fitted tree f1(x) Fitted tree f2(x)

Correctly predict all samples besides Y3 and Y5

Predict the most likely class: f(x) = Sign(zlg=1 Ay fP (x)), recall that Y € {=1,1}, so is f?(x)

Lecture plan

* Neural networks

* Geoff Hinton on recetving Nobel prize for his work on laying the
foundation of artificial neural networks

* https://www.youtube.com/watch?v=DNQI9YbyUNSQ

* https://www.youtube.com/watch?v=-icD KmvnnM

https://www.youtube.com/watch?v=DNQ9YbyUNSQ
https://www.youtube.com/watch?v=-icD_KmvnnM

Simplest problem: Handwritten digit recognition

* Input: handwritten digits from 0O to 9 in black and white

y1/40
ol /]2][d |4
<|lb]|7]2] A

* MNIST: http://yann.lecun.com/exdb/mnist/
* 50,000 handwritten digits for training; 5,000 for validation; 5,000 for testing

http://yann.lecun.com/exdb/mnist/

Colored digits

* Colored MNIST: Colored digits in a black ground

* Input is represented from 3 times 28 times 28 pixels

Label: 1 Label: 0 Label: 0 Label: 1 Label: 0 Label: 1
0 0

10 20

0 1 20

0
Label: 1

0 10 20

Label: 0

0
10
20

Label: 1

0

10

20
0 10 20

* A naive model may simply predict the digit based on its color---a problem known as
spurious correlation

0 10 20 0 10 20 0 10 20

* Link: https://github.com/facebookresearch /InvariantRiskMinimization/blob/main/code/colored mnist/main.py

https://github.com/facebookresearch/InvariantRiskMinimization/blob/main/code/colored_mnist/main.py

Housing numbers

* Street view house numbers: http://ufldl.stanford.edu/housenumbers/

* 73,257 digits for training; 26,032 digits for testing; 531,131 unlabeled digits
* Similar examples for car plates (e.g., highway tolls)

http://ufldl.stanford.edu/housenumbers/

Feedforward neural networks

* Example of a feedforward neural network

output layer
input layer

* This simple approach works well on MNIST and other handwritten digit
recognition examples

Lecture plan

* Artificial neuron: Perceptron, https://en.wikipedia.org/wiki/Perceptron

https://en.wikipedia.org/wiki/Perceptron

An artificial neuron

* Perceptron 1s a type of artificial neuron

y g
* Input: n real values xq, X3, ..., Xp,
* Weight parameters Wy, Wy, ..., W, connecting every input to the neuron

* Output
*y=0,if Xj_,wjxj+b <0
Yy = 1>if 2}1:1ij]' +b >0

Example

* There is a brand-new restaurant that had just opened near Northeastern

* x1 = “Is the dinner over $30 per person?”’; w; = —30
* X, = “Is the parking fee over $10?”; w, = —10
* x3 = “Is the wait time over half an hour?”’; w3 = —10

* Budget b = 40
eIt x;=1,x=1,x3=0,theny =1
cIf x;=0,x =1, x3=1,theny =1
eIt x;=1,x,=1,x3=1,theny =0

Succinct notation

* Vector notation allows us to write the operation within an artificial
neuron more concisely
c(Ww,x)+b=>20=>y=1
s (W,x)+bhb<0=>y=0
W = [Wq, Wy, ..., W] including all weight parameters in a vector

* b = bias: measures how easy it is to activate the neuron

Example

* Compute elementary logical functions

* Example: Use a perceptron to represent Negated AND
W= -2
S0
Wz -2
Ao /

*Ilfx; =1,x, =1,theny =0

>

*Ilf x; =1,x, =0,theny =1
*Ifx; =0,x, =1, theny =1

*If x; =0,x, =0,theny =1

Sigmoid

* Perceptron is susceptible to small perturbations

* If (W, x) + b = €, then a small change in x flips y: suppose € = 0.01, but the perturbation
reduces € by 0.02; this tlips y from 1 to 0

6@

g i il
12 dmold ~usetcor

6 4

* Sigmoid neurons do not suffer from this problem
cz=(W,x)+b:If z=0,theny=0(z) = 0.5;If z< 0, theny = 0(z) < 0.5

Sigmoid

* Intuition
* When z = (w, x) + b is very large (say = 10), y is very close to one
* When z = (w, x) + b is very small (say < —10), y is very close to zero

* One can change the slope of sigmoid neurons by inserting a temperature
parameter

1
1+ exp(—t - z)

o(z) =

* Sigmoid neurons are differentiable: can run auto-differentiation in
PyTorch or TensorFlow

e Neural network architecture

A closer look of every component

0(z) is the neuron’s
activation function

Prediction over {0,1,2,3,4,5,6,7,8,9}

12
- ..
S T LI L
- - -

output layer
input layer

hidden layer with
four neurons

Design choices

* Width: Number of neurons in the hidden layer

* In the following example, width is four

output layer
input layer

Design choices

* Width also determines the number of parameters in the network

output layer
input layer
* Number of parameters: 4 times (3 + 2) plus 4 1s 24

* Width times (number of neurons in the input layer + number of neurons in the
output layer) + number of hidden-layer neurons

Convolutional neural networks

* Number of parameters is often very large for modern neural networks

* [arge parameter space comes with large model capacity

Deep networks

ConvNet # Params IMAGENET
AlexNet 60M
VGG19 140M > 1.5M
ResNet-50 25M

* Number of parameters can be much higher than the number of labeled
examples

Design choices

e Activation function g: R —» R

* Threshold function: 6(z) = 0if z<0,1if z> 0
1
1+exp(—z)

* Sigmoid function: d(z) =

T)\V‘eslmlc\ Csamosd

Design choices

e Activation function o: IR = R

* Linear function: 0(z) = z

* Rectified linear units (Rel.U): 0(z) = max(z, 0)

Linear

-

Rell)

/]

45°

Design choices

e Activation function o: IR = R

2Z _
* Tanh: 0(2) = Z 22:, similar to sigmoid but allows for the -1 mode
Tanh
A
|
_/

Summary of activation functions

* Threshold function: 6(z) =0if z< 0;0(z) =1ifz>0
1
1+exp(—2z)

* Sigmoid function: d(z) =

* Linear function: 0(z) = z
* Rectified linear units (RelLU): 0(z) = max(z, 0)

e?Z_1

e?Zz+1

* Tanh: 0(z) =

, similar to sigmoid but allows for —1

Quick question

* How shall we set the number of output neurons?

* In the MNIST example, we want to use ten output nodes; one for each class
from zero to nine

* For binary classification, the number of output nodes is two

* For regression, the number of output nodes is one

Multi-layer neural networks

* Extending two-layer neural network to multi-layer neural network

input layer

hidden layer 1 hidden layer 2

Notes

* Feedforward neural networks receive the input data in no particular order

* This works well for images and other types of data that do not require
sequential information

* For text data, we process the data in a sequential order: transformer and
self-attention mechanisms are ideally suited for that

* Learning algorithms

Quadratic loss

* Given a prediction U for a data point x with label y
[(x) = (u=y)*

* Suitable for regression problems with neural networks

Cross-entropy loss

* Given a prediction for every label y € {1,2, ..., k}, let u be this vector
* Softmax maps U into a probability distribution:

exp(u,)
Z écz 1 EXp (ui)

f(u) = —log

* Example: for MNIST, the label space is {0,1,2, ..., 9}. A softmax output for
1 should look like [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

* [llustrate the gradient of cross-entropy loss

Py Torch

CrossEntropylLoss = Negative Log Likelihood applied to SoftMax
* L is the label space
* y, 1s the label of X,

* Xp ¢ 1s the softmax output probability of X, for label ¢

CLASS torxch.nn.CrossEntropylLoss(weight=None, size_average=None, ignore_index=- 100,
reduce=None, reduction="mean’, label_smoothing=0.8) [SOURCE]

Uz, y)=L={l,...,Iy}, l.=-w, log exp(Zn.) - 1{y, # ignore_index
Yn s,
> o1 €Xp(Znc)

https: torch.oro/docs/stable/generated /torch.nn.CrossEntropvl.oss.html

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

Gradient descent

* After setting up the loss [(f(x;), V;), we set up an algorithm to minimize
the empirical loss, measured as the averaged loss on the training set

- 1
L(fw) == > 1w,y

* We use optimization algorithms like gradient descent that are quick to run

N ,
AN
".&“\t\\\\\\\\\\

/".
‘ 1]
SO0 Y

\
Q\\\\\\\ TN
A\
7 N\\\\\\\\\\

N7

NGT#/ 1117
WO
e W, tl""".'\\

The gradient descent algorithm

* Let w; be the parameters of a neural network

* Let f,,, be the neural network

e Let VL(f,, .) be the gradient of the training loss at W

* Let 1) be a learning rate parameter

We < We — 1) VZ(th)

Stochastic gradient descent

e Motivation: If the
half 1s almost ident'_

e Mini-batch stochasf

rradient on the first

GD vs. SGD

* Gradient Descent: Update after * Stochastic Gradient Descent:
seeing all examples Update for each example

See only one
example

See all
examples

Summary

* Classifying handwritten digits with two-layer neural nets
* Input layer takes an input, often in vector or matrix format
* Hidden layer uses an activation function (ReLU for handwritten digits)

* Output layer applies softmax to convert the hidden-layer representation to a

probability distribution

* Use gradient descent to minimize the cross-entropy loss and train parameters

Prediction over {0,1,2,3,4,5,6,7,8,9}

12
T T T
S T I LY
-

Softmax output [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01]

output layer
input layer

Announcements
* Suggested reading: ISLLP, Chapter 10: 10.1 and 10.2

* HW1 grading released: Questions or regrade requests, submit on
gradescope or post a private note on piazza/canvas!

* HW2 due next Monday

e See course schedule here
https://docs.google.com/spreadsheets/d/1AKIBuVMTe2jE0r8 YhPKH
IPyc]RUBGY sIZITFyN731A /edit?gid=0#g1d =0

https://docs.google.com/spreadsheets/d/1AK1BuVMTe2jE0r8YhPKHjlPycJRUB6YsIzlIFyN73iA/edit?gid=0
https://docs.google.com/spreadsheets/d/1AK1BuVMTe2jE0r8YhPKHjlPycJRUB6YsIzlIFyN73iA/edit?gid=0

