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Warm-up questions
• What is the difference between random forests and gradient boosting?

• For random forests, how many features are usually selected to fit each tree?

• Name several choices of  activation functions for designing an artificial neuron

• Describe the difference between sigmoid activation and perceptron



Lecture plan
• Convolutional layers



Handwritten digit classification
• Classifying handwritten digits



Object recognition
• CIFAR-10



Object recognition
• ImageNet (1000 classes)



Issues of  using feedforward neural networks for large images

• Feedforward neural networks use fully-connected layers to transform the input
• Fully-connected layers do not scale to large images
• A black-and-white digit in MNIST has size 28 by 28. A colored image in CIFAR-10 has 

size 32 by 32 by 3
• For MNIST, a fully-connected neuron needs 28×28 = 784 weights
• For CIFAR-10, a fully-connected neuron needs 32×32×3 = 3,072 weights
• Processing larger images requires more parameters



CNN only uses local connections
• In convolutional neural networks (CNN), a neuron only connects to a small 

local region of  the image
• Example: A colored (2D) image is specified by width, height, and depth



Types of  layers
• A CNN involves a combination of  the following types of  layers

• Input layer: Raw pixel values of  the image

• Convolution layer: Combine pixel values in a local region

• Pooling layer: Down sample pixels

• Fully-connected layers: Classification/prediction



Illustration of  CNN architectures

Input Convolution Convolution Max 
pooling

Fully-
connected

ReLU Output



Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• First row, first patch



Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• First row, second patch



Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• First row, third patch



Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• First row, last patch



Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 1

• Second row, first patch



Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• Second row, second patch



Convolution layer
• Example (MNIST)
• Input size: 28 by 28

• Convolutional layer:
• Filter size: (3, 3)
• Stride: (1, 1)
• Zero padding size: 0

• Last row, last patch

• Question: What is the final output size?



Convolution layer
• Filter (depth times width): Larger filter captures coarser spatial patterns, 

while smaller filters capture finer spatial patterns

• Stride (depth times width): How often do we slide the filter? For example, 
when the stride is 1, we slide the filter one pixel at a time

• Zero padding: Pad the input with zeros around the border

• MNIST example: filter size (3, 3), stride size (1, 1), zero padding size 0
• Question: Suppose we want to preserve the spatial size of  the input so that the input 

and output have the same size. What should we set as the zero padding size?



Illustration
• Input dimension is one, filter size is (3), stride is (1)

• Multiply the input with the neuron weights pixel-by-pixel
Neuron Weights

What should the output be?

Input
Sequence



Illustration
• Illustration of  spatial arrangement with a simplified example
• Filter size is (3)
• Stride is (1)

Neuron Weights

Input
Sequence



Explaining zero padding size
• This example uses a single zero padding on both left and right

• We can use zero padding to adjust the output dimension, e.g., in sentence 
classification, use zero padding for fixed (max) length sentences



Stride size
• Constraints

• Filter size and stride size must satisfy that: (image width – filter size) should be 
divisible by (stride size)

• Otherwise, add zero padding

• Question: What goes wrong if  this constraint is not satisfied?



Example (CIFAR-10)
• Illustrating the convolution operation for an image of  size (32, 32, 3)

• Within each neuron, perform convolution with possible nonlinear activation

• Question: can you specify a convolution layer configuration for CIFAR-10?

A neuron only connects 
to a small “local region”



Example (ImageNet)
• ImageNet: Each image has size (227, 227, 3)
• AlexNet (2012), led by Goeff  Hinton at Google
• First convolution layer uses

• Filter size: 11 by 11 by 3
• Stride: 4 by 4
• Zero-padding: 0
• (227 – 11) is divisible by 4

• Number of  different filters is 96

• Question: Final output size?
• (227 – 11) / 4 + 1 = 55: 55 by 55 by 96

Nobel prize in physics 2024!!



Example (ImageNet)

Conv Pooling Conv Pooling



Comparison of  number of  parameters
• In ImageNet, each image has size (227, 227, 3)

• If  we use a fully-connected layer: Suppose there are 100 filters, the total number 
of  parameters is 227*227*3*100; this is very large

• If  we use a convolution layer: 11*11*3*100=36,300

• Key idea: parameter sharing, i.e., we use the same parameters in every 
filter
• Leverages the geometry already present in visual images



Summary
• Input: A 3D image of  size (𝑊!, 𝐻!, 𝐷!)
• Convolution layer:

• Number of  filters 𝐾
• Filter size 𝐹 (𝐹×𝐹×𝐷!)
• Stride size 𝑆
• Zero padding size 𝑃

• Produces an output of  size (𝑊", 𝐻", 𝐷"). What is it?
• 𝑊" =

#!$%&"'
(

+ 1

• 𝐻" =
)!$%&"'

(
+ 1

• 𝐷" = 𝐾

• With parameter sharing, 𝐹×𝐹×𝐷! weights per filter, for a total of  𝐹"×𝐷! ×𝐾 weights



Numpy example
• Input: numpy array 𝑿
• 𝑋. 𝑠ℎ𝑎𝑝𝑒 = (11,11,4)

• Convolution layer
• Number of  filters: 𝐾 = 2
• Filter size: 5×5×4
• Stride size: 2×2
• Zero padding size: 0

• Output: Denote as 𝑉
• Output width and height: !!"#$ + 1 = 4
• Depth: 2



Numpy example
• First depth slice, along the first column: Filter parameters 𝑊!, Bias 𝑏!. 
𝑊!. 𝑠ℎ𝑎𝑝𝑒 = (5, 5, 4)

• 𝑉 0,0,0 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 : 5, : 5, ∶ 	∗ 𝑊% + 𝑏%

• 𝑉 1,0,0 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 2: 7, : 5, ∶ 	∗ 𝑊% + 𝑏%

• 𝑉 2,0,0 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 4: 9, : 5, ∶ 	∗ 𝑊% + 𝑏%

• 𝑉 3,0,0 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 6: 11, : 5, ∶ 	∗ 𝑊% + 𝑏%



Numpy example
• For a different neuron: Filter parameters 𝑊", bias 𝑏"

• 𝑉 0,0,1 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 : 5, : 5, ∶ 	∗ 𝑊! + 𝑏!

• 𝑉 1,0,1 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 2: 7, : 5, ∶ 	∗ 𝑊! + 𝑏!

• 𝑉 2,0,1 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 4: 9, : 5, ∶ 	∗ 𝑊! + 𝑏!

• 𝑉 3,0,1 = 𝑛𝑝. 𝑠𝑢𝑚 𝑋 6: 11, : 5, ∶ 	∗ 𝑊! + 𝑏!

• Question: how do we calculate 𝑉 0,1,1  and 𝑉 2,3,1 ?



Lecture plan
• Pooling layers



Pooling layer
• Pooling reduces the spatial size of  the input: Insert a pooling layer 

between convolution layers



Pooling layer
• Input: An image of  size 𝑊!, 𝐻!, 𝐷!

• Pooling layer
• Filter size 𝐹
• Stride size 𝑆

• Output size: (𝑊$, 𝐻$, 𝐷$)
• 𝑊! =

"!#$
%

+ 1

• 𝐻! =
&!#$
%

+ 1
• 𝐷! = 𝐷'

• Previous example: 𝑭 = 𝟐 and 𝑺 = 𝟐



CNN architecture

• A deep CNN involves multiple convolution and pooling layers
• Input -> [[Conv -> ReLU]*N -> Pool?]*M -> [FC -> ReLU]*K -> FC

Input Convolution Max 
pooling

Fully-
connected

ReLU Output

ReLU



Summary of  CNN architecture

• Input -> FC: Linear classifier
• Input -> FC -> ReLU: Non-linear classifier
• Input -> (Conv -> ReLU -> Pool)*2 -> FC -> ReLU -> FC: A simple CNN architecture
• Input -> (Conv -> ReLU -> Conv -> ReLU -> Pool) -> FC -> ReLU -> FC: Suitable for 

large images

Input Convolution Max 
pooling

Fully-
connected

ReLU Output

ReLU



Lecture plan
• Implementation of  a simple CNN in PyTorch



Implementation in PyTorch
• Loading dependencies



Loading dataset



Visualization



Defining network architecture



Training procedure
• Stochastic gradient descent
• Let 𝑤& be the parameters of  a neural network
• Let 𝑓'!  be the neural network
• Let ∇E𝐿(𝑓'!) be the gradient of  the training loss 

at 𝑤&
• Let 𝜂 be a learning rate parameter, and 𝐵 be the 

number of  batches
• For 𝑖 = 0,1, … , 𝐵 − 1

𝑤+ ← 𝑤+ − 𝜂 ⋅ ∇9𝐿, 𝑓-! ,
where the loss is evaluated on the 𝑖-th batch



Test accuracy



Training and test loss curves



Illustration of  stochastic gradient descent
• Stochastic Gradient Descent 

updates for each example, whereas 
gradient descent updates for all 
examples



A more sophisticated CNN architecture

More suitable for large-sized, colored images 
(e.g., ImageNet)



Announcements
• HW2 is due

• Submit regrade requests on gradescope or drop by TA office hours to 
double check grading doubts

• We will release HW3 later today (this homework will be lighter than 
HW2)


