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Abstract

A widely used algorithm for transfer learning is fine-tuning, where a pre-trained
model is fine-tuned on a target task with a small amount of labeled data. When the
capacity of the pre-trained model is much larger than the size of the target data set,
fine-tuning is prone to overfitting and “memorizing” the training labels. Hence, an
important question is to regularize fine-tuning and ensure its robustness to noise.
To address this question, we begin by analyzing the generalization properties of
fine-tuning. We present a PAC-Bayes generalization bound that depends on the
distance traveled in each layer during fine-tuning and the noise stability of the
fine-tuned model. We empirically measure these quantities. Based on the analysis,
we propose regularized self-labeling—the interpolation between regularization
and self-labeling methods, including (i) layer-wise regularization to constrain the
distance traveled in each layer; (ii) self label-correction and label-reweighting
to correct mislabeled data points (that the model is confident) and reweight less
confident data points. We validate our approach on an extensive collection of image
and text data sets using multiple pre-trained model architectures. Our approach
improves baseline methods by 1.76% (on average) for seven image classification
tasks and 0.75% for a few-shot classification task. When the target data set includes
noisy labels, our approach outperforms baseline methods by 3.56% on average in
two noisy settings.

1 Introduction

Learning from limited labeled data is a fundamental problem in many real-world applications (Ratner
et al., 2016, 2017). A common approach to address this problem is fine-tuning a large model that has
been pre-trained on publicly available labeled data (He et al., 2019). Since fine-tuning is typically
applied to a target task with limited labels, this algorithm is prone to overfitting or “memorization”
issues (Tan et al., 2018). These issues worsen when the target task contains noisy labels (Zhang et al.,
2016). In this paper, we analyze regularization methods for fine-tuning from both theoretical and
empirical perspectives. Based on the analysis, we propose a regularized self-labeling approach that
improves the generalization and robustness properties of fine-tuning.

Previous works (Li et al., 2018a,b) have proposed regularization methods to constrain the distance
between a fine-tuned model and the pre-trained model in the Euclidean norm. Li et al. (2020) provides
extensive study to show that the performance of fine-tuning and the benefit of adding regularization
depend on the hyperparameter choices. Salman et al. (2020) empirically find that performing
adversarial training during the pre-training phase helps learn pre-trained models that transfer better to
downstream tasks. The work of Gouk et al. (2021) generalizes the above ideas to various norm choices
and finds that projected gradient descent methods perform well for implementing distance-based
regularization. Additionally, they derive generalization bounds for fine-tuning using Rademacher
complexity. These works focus on settings where there is no label noise in the target data set. When
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label noise is present, for example, due to applying weak supervision techniques (Ratner et al., 2016),
an important question is to design methods that are robust to such noise. The problem of learning
from noisy labels has a rich history of study in supervised learning (Natarajan et al., 2013). In
contrast, little is known in the transfer learning setting. These considerations motivate us to analyze
the generalization and robustness properties of fine-tuning.

In Section 4.1, we begin by conducting a PAC-Bayesian analysis of regularized fine-tuning. This is
inspired by recent works that have found PAC-Bayesian analysis correlates with empirical perfor-
mance better than Rademacher complexity (Jiang et al., 2020). We identify two critical measures
for analyzing the generalization performance of fine-tuning. The first measure is the `2 norm of the
distance between the pre-trained model (initialization) and the fine-tuned model. The second measure
is the perturbed loss of the fine-tuned model, i.e. its loss after the model weights get perturbed by
random noise. First, we observe that the fine-tuned weights remain closed to the pre-trained model.
Moreover, the top layers travel much further away from the pre-trained model than the bottom layers.
Second, we find that fine-tuning from a pre-trained model implies better noise stability than training
from a randomly initialized model. In Section 4.2, we evaluate regularized fine-tuning for target
tasks with noisy labels. We find that fine-tuning is prone to “memorizing the noisy labels”, and
regularization helps alleviate such memorization behavior. Moreover, we observe that the neural
network has not yet overfitted to the noisy labels during the early phase of fine-tuning. Thus, its
prediction could be used to relabel the noisy labels.
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Figure 1: Red: Layer-wise regularization closes
generalization gap. Magenta: Self-labeling rela-
bels noisy data points to their correct label.

We propose an algorithm that incorporates layer-
wise regularization and self-labeling for im-
proved regularization and robustness based on
our results. Figure 1 illustrates the two compo-
nents. First, we encode layer-wise distance con-
straints to regularize the model weights at dif-
ferent levels. Compared to (vanilla) fine-tuning,
our algorithm reduces the gap between the train-
ing and test accuracy, thus alleviating overfitting.
Second, we add a self-labeling mechanism that
corrects and reweights “noisy labels” based on
the neural network’s predictions. Figure 1 shows
that our algorithm effectively hinders the model
from learning the incorrect labels by relabeling
them to correct ones.

In Section 5, we evaluate our proposed algorithm for both transfer learning and few-shot classification
tasks with image and text data sets. First, using ResNet-101 (He et al., 2016) as the pre-trained
model, our algorithm outperforms previous fine-tuning methods on seven image classification tasks
by 1.76% on average and 3.56% when their labels are noisy. Second, we find qualitatively similar
results for applying our approach to medical image classification tasks (ChestX-ray14 (Wang et al.,
2017; Rajpurkar et al., 2017)) and vision transformers (Dosovitskiy et al., 2020). Finally, we extend
our approach to few-shot learning and sentence classification. For these related but different tasks and
data modalities, we find an improvement of 0.75% and 0.46% over previous methods, respectively.

In summary, our contributions are threefold. First, we provide a PAC-Bayesian analysis of regularized
fine-tuning. Our result implies empirical measures that explain the generalization performance of
regularized fine-tuning. Second, we present a regularized self-labeling approach to enhance the
generalization and robustness properties of fine-tuning. Third, we validate our approach on an
extensive collection of classification tasks and pre-trained model architectures.

2 Related work

Fine-tuning is widely used in multi-task and transfer learning, meta-learning, and few-shot learning.
Previous works (Li et al., 2018b,a) find that injecting `2 regularization helps improve the performance
of fine-tuning. Li et al. (2018b) propose a `2 distance regularization method that penalizes the `2
distance between the fine-tuned weights and the pre-trained weights. Li et al. (2018a) penalize
the distance between the feature maps as opposed to the layer weights. Chen et al. (2019) design
a regularization method that suppresses the spectral components (of the feature maps) with small
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singular values to avoid negative transfer. Gouk et al. (2021) instead encode distance constraints in
constrained minimization and use projected gradient descent to ensure the weights are close to the
pre-trained model. Salman et al. (2020) show that fine-tuning from adversarially robust pre-trained
models outperforms fine-tuning from (standard) pre-trained models.

The robustness of learning algorithms in the presence of label noise has been extensively studied in
supervised learning (Natarajan et al., 2013). Three broad ideas for designing robust algorithms include
defining novel losses, identifying noisy labels, and regularization methods. Zhang and Sabuncu (2018)
design the robust Generalized Cross Entropy (GCE) loss which is a mixture of Cross Entropy (CE)
and mean absolute error. The Symmetric Cross Entropy (SCE) (Wang et al., 2019) loss combines
reverse cross-entropy with the CE loss. Ma et al. (2020) proposes APL, which normalizes the loss to
be robust to noisy labels and combines active and passive loss functions. Thulasidasan et al. (2019)
propose DAC, which identifies and suppresses the signals of noisy samples by abstention-based
training. Liu et al. (2020) introduce ELR, an early learning regularization approach to mitigate label
“memorization”. Huang et al. (2020) propose a self-adaptive training method that corrects noisy
labels and reweights training data to suppress erroneous signals. These works primarily concern
the supervised learning setting. To the best of our knowledge, fine-tuning algorithms under label
noise are relatively under-explored in transfer learning. Our approach draws inspiration from the
semi-supervised learning literature, which has evaluated pseudo-labeling and self-training approaches
given a limited amount of labeled data, and a large amount of unlabeled data (Zou et al., 2019;
Xu et al., 2021; Tai et al., 2021). A very recent work considered a sharpness-aware approach and
evaluated its performance for fine-tuning from noisy labels (Foret et al., 2021). It would be interesting
to see if combining their approach with our ideas could lead to better results.

From a theoretical perspective, the seminal work of Ben-David et al. (2010) considers a setting
where labeled data from many source tasks and a target task is available. They show that minimizing
a weighted combination of the source and target empirical risks leads to the best result. In the
supervised setting, Arora et al. (2019) provide data-dependent generalization bounds for neural
networks. Nagarajan and Kolter (2018) and Wei and Ma (2019a,b) provide improved generalization
bounds that depend only polynomially on the depth of the neural network characterized by a margin
condition. Recent work has found that the PAC-Bayes theory provides generalization measures that
correlate with empirical generalization performance better than other alternatives (Jiang et al., 2020).
We defer a more extensive review of PAC-Bayesian generalization theory to Section A.

3 Preliminaries

Problem setup. We begin by formally introducing the setup. Suppose we would like to solve a
target task. We have a training data set of size n(t). Let (x(t)1 , y

(t)
1 ), . . . , (x

(t)

n(t) , y
(t)

n(t)) be the feature

vectors and the labels of the training data set. We assume that every x(t)i lies in a d-dimensional space
denoted by X ⊂ Rd. Following standard terminologies in statistical learning, we assume all data
are drawn from some unknown distribution supported on X × Y , where Y ⊆ R is the label space.
Denote the underlying data distribution as P(t).

For our result in Section 4.1, we consider feedforward neural networks, and our results can also be
extended to convolutional neural networks (e.g., using ideas from Long and Sedghi (2020)). Consider
an L layer neural network. For each layer i from 1 to L, let ψi be the activation function and let
Wi be the weight matrix at layer i. Given an input z to the i-th layer, the output is then denoted as
φi(z) = ψi(Wiz). Thus, the final output of the network is given by

fW (x) = φL ◦ φL−1 ◦ · · ·φ1(x), for any input x ∈ X ,
where we use W = [W1, . . . ,WL] to include all the parameters of the network for ease of notation.
The prediction error of fW is measured by a loss function `(·) that is both convex and 1-Lipschitz.

L(t)(fW ) = E
(x,y)∼P(t)

[`(fW (x), y)] . (1)

Suppose we have access to a pre-trained source model Ŵ (s). Using Ŵ (s) as an initialization, we
then fine-tune the layers Ŵ (s)

1 , . . . , Ŵ
(s)
L to predict the target labels.

Applications. We consider seven image classification data sets described in Table 1. We use ResNets
pre-trained on ImageNet as the initialization Ŵ (s) (Russakovsky et al., 2015; He et al., 2016). We

3



Table 1: Basic statistics for seven image classification tasks.

Datasets Training Validation Test Classes

Aircrafts (Maji et al., 2013) 3334 3333 3333 100
CUB-200-2011 (Wah et al., 2011) 5395 599 5794 200
Caltech-256 (Griffin et al., 2007) 7680 5120 5120 256
Stanford-Cars (Krause et al., 2013) 7330 814 8441 196
Stanford-Dogs (Khosla et al., 2011) 10800 1200 8580 120
Flowers (Nilsback and Zisserman, 2008) 1020 1020 6149 102
MIT-Indoor (Sharif Razavian et al., 2014) 4824 536 1340 67

perform fine-tuning using the pre-trained network on the above data sets. See Section 5.1 for further
description of the training procedure.

Modeling label noise. In many settings, fine-tuning is applied to a target task whose labels may
contain noise; for example, if the target labels are created using weak supervision techniques
(Ratner et al., 2019; Saab et al., 2021). To capture such settings, we denote a noisy data set as
(x

(t)
1 , ỹ

(t)
1 ), . . . , (x

(t)

n(t) , ỹ
(t)

n(t)), where ỹ(t)i is a noisy version of y(t)i . We consider two types of label
noise: independent noise and correlated noise. We say that the label noise is independent if it is
independent of the input feature vector

Pr(ỹ
(t)
i = k|y(t)i = j, x

(t)
i ) = Pr(ỹ

(t)
i = k|y(t)i = j) = ηj,k

for some fixed ηj,k between 0 and 1. On the other hand, we say that the label noise is correlated if it
depends on the input feature vector (i.e. the above equation does not hold).

4 Our proposed approaches

Given the problem setup described above, next, we study the generalization and robustness properties
of regularized fine-tuning methods. First, we present a PAC-Bayes generalization bound for regular-
ized fine-tuning. This result motivates us to evaluate two empirical measures: the fine-tuned distance
in each layer and the perturbed loss of the fine-tuned model. Second, we consider fine-tuning from
noisy labels. We show that layer-wise regularization prevents the model from memorizing the noisy
labels. We then suggest injecting predictions of the model during training, similar to self-training and
pseudo-labeling. Finally, we incorporate both components into our regularized self-labeling approach,
blending the strengths of both to improve the generalization performance and the robustness of
fine-tuning.

4.1 Fine-tuning and regularization

We consider the following regularized fine-tuning problem, which constrains the network from
traveling too far from the pre-trained initialization Ŵ (s) (Li et al., 2018a,b; Gouk et al., 2021).

Ŵ ← argmin L̂(t)(fW ) (2)

s.t. ‖Wi − Ŵ (s)
i ‖F ≤ Di, ∀ i = 1, . . . , L. (3)
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Figure 2: The training and test accuracy of fine-
tuning using early stopping vs. optimizing (2)
and (3) on the Indoor data set.

Above, Di is a hyperparameter that constrains how
far the i-th layer Wi can travel from the pre-trained
initialization Ŵ (s)

i . Previous works have observed
that stronger regularization reduces the generaliza-
tion gap during fine-tuning (cf. Figure 2). Next,
we analyze the generalization error of Ŵ , that is,
L(t)(fŴ ) − L̂(t)(fŴ ), where L(t)(fŴ ) is the test
loss of fŴ according to equation (1) and L̂(t)(fŴ )
is the empirical loss of fŴ on the training data set.

PAC-Bayesian analysis. We begin by analyzing the
generalization error of fŴ using PAC-Bayesian
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(a) Fine-tuned distances.

CUB-200-2011
σ Random Pre-trained Adversarial

10−2 3.77±0.42 1.45±0.13 1.76±0.09
10−3 0.82±0.07 0.62±0.03 0.54±0.03
10−4 0.81±0.04 0.61±0.03 0.61±0.01

Indoor
σ Random Pre-trained Adversarial

10−2 2.51±0.34 1.11±0.09 0.97±0.07
10−3 0.49±0.09 0.36±0.05 0.32±0.04
10−4 0.44±0.03 0.33±0.02 0.30±0.04

(b) Perturbed loss.

Figure 3: Left: Ratio between the `2-norm of the fine-tuned distances and the pre-trained network.
Right: Perturbed loss of fine-tuned model from random initializations (Random), pre-trained model
initializations (Pre-trained), adversarially trained model initializations (Adversarial). Results are
shown for the CUB-200-2011 and the Indoor data sets using ResNet-18; Averaged over 10 runs.

tools (McAllester, 1999a,b). This departs from the previous work of Gouk et al. (2021), which bases
on their analysis using Rademacher complexity. This change of perspective is inspired by several
recent works that have found PAC-Bayesian bounds to better correlate with empirical performance
than Rademacher complexity bounds (Jiang et al., 2020). We refer the interested reader to Section
A for further references from this line of work. After presenting our result, we provide empirical
measures of our result and discuss the practical implication.

Theorem 4.1 (PAC-Bayes generalization bound for fine-tuning). Suppose for every i = 1, . . . , L,
‖Ŵ (s)

i ‖2 ≤ Bi, for a fixed Bi > 1. Suppose the feature vectors in the domain X are all bounded:
‖x‖2 ≤ C1 for every x ∈ X , for some C1 ≥ 1. Finally, suppose the loss function `(·) is 1-Lipschitz
and bounded from above by a fixed constant C2. Under these conditions, let fŴ be the minimizer of
regularized fine-tuning, solved from problem (3). Let ε > 0 be an arbitrary small value. Let H be the
maximum over the width over all the L layers and the input dimension d. Then, with probability at
least 1− 2δ for some small δ > 0, the expected loss L(t)(fŴ ) is upper bounded by

L(t)(fŴ ) ≤ L̂(t)(fŴ ) + ε+ C2

√
36
ε2
·C2

1H log(4LHC2)

(∑L
i=1

∏L
j=1

(Bj+Dj)

Bi+Di

)2(∑L
i=1D

2
i

)
+3 ln n(t)

δ +8

n(t) . (4)

Relation to prior works. Compared to the result of Gouk et al. (2021), we instead proceed by factoring
the generalization error into a noise error (i.e. the ε term in equation (4)) and a KL-divergence
between Ŵ (s) and Ŵ (i.e. the final term in equation (4)). The proof of Theorem 4.1 is based on
Neyshabur et al. (2018) and is presented in Appendix A. The difference between Theorem 4.1 and the
result of Neyshabur et al. (2018) is that our result is stated for the (e.g. cross-entropy) loss function
`(·) whereas Neyshabur et al. (2018) states the result using the soft margin loss.

Our result suggests that the fine-tuned distances {Di}Li=1 and the perturbed loss (more precisely
EU
[
`(fŴ+U (x), y)

]
where every entry of U is drawn from N (0, σ2)) are two important measures

for fine-tuning. Next, we empirically evaluate these two measures on real-world data sets.

Fine-tuned distances {Di}L
i=1. First, we present our empirical finding for the fine-tuned distances

in each layer. We fine-tune a ResNet-18 model (pre-trained on ImageNet) on seven data sets and
calculate the Frobenius distance between Ŵ (s)

i and Ŵi for every layer i.

Figure 3a shows the ratio of the fine-tuned distances to the pre-trained weights in each layer. First,
we observe that the fine-tuned distances are relatively small compared to the pre-trained network.
This means that fine-tuning stays within a small local region near the pre-trained model. Second, we
find that Di varies across layers. Di is smaller at lower layers and is larger at higher layers. This
observation aligns with the folklore intuition that different layers in Convolutional neural networks
play a different role (Guo et al., 2019). Bottom layers extract higher-level representations of features
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(a) Noise rate η = 60%.
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(b) Noise rate η = 80%.

Figure 4: Training and test accuracy of fine-tuning using early stopping and optimizing equations (5)
and (6) on the Indoor data set with different levels of noise rate. Stronger regularization reduces the
generalization gap in both settings.

and stay close to the pre-trained model. Top layers extract class-specific features and vary among
different tasks. Thus, top layers travel further away from the pre-trained model.

Based on the above empirical finding, we propose layer-wise constraints as regularization. In
particular, the constraints for the bottom layers should be small, and the constraints for the top layers
should be large. In practice, we find that an exponentially increasing scheme involving a base distance
parameter D and a scale factor γ works well. This is summarized in the following regularized
fine-tuning problem:

Ŵ ← argmin L̂(t)(fW ) (5)

s.t. ‖Wi − Ŵ (s)
i ‖F ≤ D · γ

i−1, ∀ i = 1, . . . , L. (6)
where the scale factor γ > 1 according to Figure 3a. The previous work of Gouk et al. (2021) uses
the same distance parameter in equation (6), i.e., Di = D, ∀i = 1, . . . , L. In our experiments, we
have observed that such constant regularization constraints are only active at the top layers. With
layer-wise regularization, we instead extend the constraints to the bottom layers as well. In Table 8
(cf. Section B.3), we compare the value of

∑L
i=1D

2
i between constant regularization and layer-wise

regularization. We find that layer-wise regularization leads to a smaller value of
∑L
i=1D

2
i , thus

indicating a tighter generalization bound according to Theorem 4.1.

Perturbed loss EU

[
`(fŴ+U(x), y)

]
. Second, we compare the perturbed loss of models fine-

tuned from random, pre-trained, and adversarially robust pre-trained model initializations. The
perturbed loss is measured by the average loss on the training set, after perturbing each entry of the
layer weights by a Gaussian random variable N(0, σ2).

In Table 3b, we report the perturbed losses for both the CUB-200-2011 and the Indoor data set.
The results show that models fine-tuned from pre-trained initializations are more stable than models
fine-tuned from random initializations.

Explaining why adversarial robustness helps fine-tuning. Recent work (Salman et al., 2020) found
that performing adversarial training in the pre-training phase leads to models that transfer better to
downstream tasks. More precisely, the adversarial training objective is defined as

L̃(s)
adv(θ) = min

W

1

n(s)

n(s)∑
i=1

max
‖δ‖2≤ε

`(fW (x
(s)
i + δ), y

(s)
i ). (7)

Let Ŵ (s)
adv be a fine-tuned neural network using a pre-trained model from adversarial training. We

measure the perturbed loss of Ŵ (s)
adv using the pre-trained model provided by Salman et al. (2020) on

the CUB-200-2011 and Indoor data set. Table 3b shows that f
Ŵ

(s)
adv

often incurs lower perturbed losses
than models fine-tuned from random and pre-trained initializations. In Section B.3, we additionally
observe that the layers of Ŵ (s)

adv generally have lower Frobenious norms compared to Ŵ (s). Thus,
the improved noise stability and the smaller layer-wise norms together imply a tighter generalization
bound for adversarial training. We leave a thorough theoretical analysis of adversarial training in the
context of fine-tuning to future works.

6



0 5 10 15 20
Number of epochs

0.2

0.4

0.6

0.8

P
re

ci
si

on

With regularization

Without regularization

(a) Precision of self label-correction.

0 10 20
Number of epochs

0.02

0.07

0.12

0.17

A
ve

ra
ge

w
ei

gh
t

Correctly labeled training data

Incorrectly labeled training data

(b) Average weight injected by self label-reweighting.

Figure 5: Left: Comparing the precision of self-labeling with vs. without regularization. Precision
is defined as the number of data points whose labels are corrected (cf. Line 7 in Alg. 1) divided by
the number of data points whose labels are changed at every epoch. Right: Comparing the average
normalized weight (cf. Line 10 in Alg. 1) of training data points with the correct label vs. data points
with an incorrect label.

4.2 Fine-tuning and robustness

Next, we extend our approach to fine-tuning from noisy labels. We compare fine-tuning with and
without regularization on a target task with independent label noise to motivate our approach. In
Figure 4, we plot the training and test accuracy curves on the Indoor dataset with two noise rates.
We observe that the test accuracy increases at first, meaning the network learns from the correct
labels during the first few epochs. As the learning process progresses, the test accuracy of fine-tuning
decreases, implying the network is “overfitting” to noisy labels. Furthermore, the gap between the
training and test accuracy curves is more than 20%. Similar observations have been presented in prior
works (Zhang et al., 2016; Li et al., 2018c; Liu et al., 2020), where over-parametrized neural networks
can memorize the entire training set. One way to mitigate memorization is to explicitly reduce model
capacity (Wu et al., 2020; Yang et al., 2021). Another way is via explicit regularization since the
distance constraint significantly reduces the training-test accuracy gaps and improves test accuracy by
a significant margin. Based on our empirical observation, the neural network has some discriminating
power during the early fine-tuning phase. Thus, we can leverage the model predictions to relabel
incorrect labels and reweight data points with incorrect labels. We describe the two components next.

Self label-correction. We propose a label correction step to augment the number of correct labels.
We leverage the discriminating power of a network during the early phase and correct data points
for which the model has high confidence. Concretely, let pi be the prediction of the i-th data point.
Given a confidence threshold pt at epoch t, if max(pi) ≥ pt and argmax(pi) 6= ỹ

(t)
i , we identify

data point i as noisy and relabel it to

ỹ
(t)
i = argmax(pi).

Figure 5a illustrates the precision of this step. We define precision as the number of correctly
relabeled data points divided by the total number of data points whose labels are relabeled. We
observe that precision is high at the beginning (around 60%) and gradually decreases in later epochs.
Moreover, we find precision increases with regularization. This suggests an intricate interaction
between regularization and self-labeling during fine-tuning. We elaborate on the role of regularization
in label correction by looking at the number of relabeled data points in Section B.3.

Self label-reweighting. We incorporate a soft data removal step to prevent the model from overfitting
to noisy labels. We identify data points as noisy if their loss values are large and thus down-weight
them during training. The model will prioritize data points with correct labels in its gradient by
assigning smaller weights to large-loss data points. More precisely, given a data point (x(t)i , ỹ

(t)
i ),

we reweight it by ωi = exp(−`(fW (x
(t)
i ), ỹ

(t)
i )/τ) where τ is a temperature parameter. In the

implementation, we normalize the weights of every data point in every mini-batch B:

L̂B(fW ) =
1∑

i∈B ωi

∑
i∈B

ωi · `(fW (x
(t)
i ), ỹ

(t)
i ).
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Algorithm 1 Regularized self-labeling (REGSL)

Input: Input nosiy data (x
(t)
1 , ỹ

(t)
1 ), . . . , (x

(t)

n(t) , ỹ
(t)

n(t)), network model fW , constraint distance D, distance
scale factor γ, re-weight start step Er , re-weight temperature τ , label correction start step Ec, label correction
threhold pt, and fine-tuning steps T
1: Initialize model parameters with pre-trained weights W = Ŵ s and the start step t = 0
2: while t < T do
3: Fetch a mini-batch of data {(x(t)i , ỹ

(t)
i )}mi=1

4: for each data point i in the batch do
5: Calculate the predicted probability pi = softmax(fW (x

(t)
i ))

6: if t > Ec and max(pi) > pt and argmax(pi) 6= ỹ
(t)
i then

7: Correct the label ỹ(t)i = argmax(pi)
8: end if
9: Calculate loss `i = `(fW (x

(t)
i ), ỹ

(t)
i )

10: if t > Er then Calculate the weight ωi = exp(−`i/τ) else Set the weight ωi = 1
11: end for
12: Update fW by SGD on L = − 1∑

i ωi

∑m
i ωi`i and t = t+ 1

13: Project the weights Wi of each layer inside the layer-wise constraint region as in Equation 6
14: end while

Figure 5b compares the average weight of data points with the correct label to data points with
an incorrect label. We find that with our reweighting scheme, the average weight of incorrectly
labeled data points is much lower than the average weight of correctly labeled data points. Thus, the
reweighting scheme expands the gradient of correctly labeled data points, thus reducing the fraction
of noisy data points in the training set.

The pseudo-code for our final approach, which combines both layer-wise regularization and self-
labeling, is presented in Algorithm 1.

5 Experiments

We evaluate our proposed algorithm in a wide range of tasks and pre-trained networks. First, we
show that our algorithm outperforms the baselines by 1.75% on average over seven transfer learning
tasks and can generalize to a more distant task of medical images. Second, our algorithm improves
the robustness of fine-tuning in the presence of noisy labels compared to previous methods. Our
algorithm improves over numerous baselines by 3.56% on average under both independent and
correlated label noise. Moreover, our approach can achieve a similar performance boost for fine-
tuning vision transformer models on noisy labeled data. Finally, we show our algorithms improve
over fine-tuning baselines by 0.75% on average for the related task of few-shot classification. Our
extensive evaluation confirms that our approach applies to a broad range of settings, validating our
algorithmic insights. Due to space constraints, we defer the ablation studies to Section B.3. Our code
is available at https://github.com/NEU-StatsML-Research/Regularized-Self-Labeling.

5.1 Experimental setup

Data sets. First, we evaluate fine-tuning on seven image classification data sets and one medical
image data set. The statistics of the seven image data sets are described in Table 1. For the medical
imaging task, we consider the ChestX-ray14 data set contains 112120 frontal-view chest X-ray
images labeled with 14 different diseases (Wang et al., 2017; Rajpurkar et al., 2017). Second, we
evaluate Algorithm 1 under two different kinds of label noise to test the robustness of fine-tuning.
We selected the MIT-Indoor data set (Sharif Razavian et al., 2014) as the benchmark data set and
randomly flipped the labels of the training samples. The results for the other data sets are similar,
which can be found in Section B.2. We consider both independent random noise and correlated noise
in our experiments. We generate the independent random noise by flipping the labels uniformly with
a given noise rate. We simulate the correlated noise by using the predictions of an auxiliary network
as noisy labels. Section B.1 describes the label flipping process. For few-shot image classification,
we conduct experiments on the miniImageNet benchmark (Vinyals et al., 2016) following the setup
of Tian et al. (2020).
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Table 2: Top-1 test accuracy for fine-tuning ResNet-101 pre-trained on the ILSVRC-2012 subset of
ImageNet. Results are averaged over 3 random seeds.

Aircrafts CUB-200-2011 Caltech-256 Stanford-Cars Stanford-Dogs Flowers MIT-Indoor

Fine-tuning 73.96±0.34 80.31±0.26 79.41±0.23 89.28±0.14 82.89±0.35 92.92±0.15 74.78±0.97
`2-Norm 74.84±0.15 80.80±0.16 79.67±0.31 88.96±0.18 83.00±0.10 92.76±0.26 76.57±0.70
LS 74.19±0.41 82.22±0.17 81.10±0.13 89.66±0.10 84.14±0.21 93.72±0.04 76.84±0.31
`2-SP 74.09±0.98 81.49±0.36 84.13±0.09 88.96±0.09 88.95±0.15 93.06±0.28 78.11±0.37
`2-PGM 74.90±0.26 81.23±0.32 83.25±0.33 88.92±0.39 86.48±0.28 93.23±0.34 77.31±0.30

REGSL (ours) 75.32±0.23 82.24±0.21 84.90±0.16 89.14±0.22 89.58±0.13 93.82±0.35 79.30±0.31

Architectures. We use the ResNet-101 (He et al., 2016) network for transfer learning tasks and
ResNet-18 (He et al., 2016) network for ChestX-ray data set. We use ResNet-18 network for the label-
noise experiments and extend the our algorithm to the vision transformer (ViT) model (Dosovitskiy
et al., 2020). The ResNet models are pre-trained on ImageNet (Russakovsky et al., 2015) and the ViT
model is pre-trained on ImageNet-21k data set (Dosovitskiy et al., 2020). For the few-shot learning
tasks, we use ResNet-12 pre-trained on the meta-training data set as in the previous work (Tian et al.,
2020). We set four different values of Di for the four blocks of the ResNet models in our algorithm.
We describe the fine-tuning procedure and the hyperparameters in Section B.1.

Baselines. For the transfer learning tasks, we use the Frobenius norm for distance regularization. We
present ablation studies to compare the Frobenius norm and other norms in Section B.3. we compare
our algorithm with fine-tuning with early stop (Fine-tuning), fine-tuning with weight decay (`2-
Norm), label smoothing (LS) method formulated in Müller et al. (2019), `2-SP (Li et al., 2018b), and
`2-PGM (Gouk et al., 2021). For testing the robustness of our algorithm, in addition to the baselines
described above, we adopt several baselines that have been proposed in the supervised learning
setting, including GCE (Zhang and Sabuncu, 2018), SCE (Wang et al., 2019), DAC (Thulasidasan
et al., 2019), APL (Ma et al., 2020), ELR (Liu et al., 2020) and self-adaptive training (SAT) (Huang
et al., 2020). We compare with the same baselines to transfer learning in few-shot classification tasks.
We describe the implementation and hyper-parameters of baselines in Section B.1.

5.2 Experimental results

Improved regularization for transfer learning. We report the test accuracy of fine-tuning ResNet-
101 on seven data sets in Table 2. We observe that our method performs the best among six
regularized fine-tuning methods on average. Our proposed layer-wise regularization method provides
an improvement of 1.76% on average over distance-based regularization (Gouk et al., 2021). In
particular, our approach outperforms `2-PGM by 2 ∼ 3% on both Stanford-Dogs and MIT-Indoor
data sets. This suggests that adding appropriate distance constraints for all the layers is better than
applying only one constraint to the top layers. In Table 10 (cf. Section B.3), we note that using the
MARS norm of Gouk et al. (2021) yields comparable results to using the `2 norm with our approach.

Next, we apply our approach to medical image classification, a more distant transfer task (relative to
the source data set ImageNet). We report the mean AUROC (averaged over predicting all 14 labels)
on the ChestX-ray14 data set in Table 6a (cf. Section B.2). With layer-wise regularization, we see an
0.39% improvement over the baseline methods. Finally, we extend our approach to text classification.
The results are consistent with the above and can be found in Table 7 (cf. Section B.2).

Improved robustness under label noise. Next, we report the test accuracy of our approach on
the Indoor data set with independent and correlated noise in Table 3. We find that our approach
consistently outperforms baseline methods by 1 ∼ 3% for various settings involving label noise. First,
our method (REGSL) improves the performance by over 4% on average compared to distance-based
regularization (Gouk et al., 2021). This result implies our method is more robust to label noise in the
training labels. Second, our method outperforms previous supervised training methods by 3.56%
on average. This result suggests that regularization is critical for fine-tuning. Taken together, our
results suggest that regularization and self-labeling complement each other during fine-tuning. This
is reinforced by our ablation study in Section B.3; We study the influence of each component of our
algorithm and find that removing any component degrades performance.

We further apply our approach to fine-tuning pre-trained ViT (Dosovitskiy et al., 2020) from noisy
labels, under the same setting as Table 3. Table 6b shows the result (cf. Section B.2). First, we find that
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Table 3: Top-1 test accuracy of fine-tuning ResNet-18 on the Indoor data set with various settings of
noisy labels in the training set. Results are averaged over 3 random seeds.

Data sets Methods independent noise correlated noise
20% 40% 60% 80% 25.18%

Indoor

Fine-tuning 65.02±0.39 57.49±0.39 44.60±0.95 27.09±0.19 67.49±0.74
LS 67.04±0.58 58.98±0.57 48.56±0.53 25.82±0.90 68.06±0.76

`2-PGM 69.45±0.19 62.74±0.60 51.24±0.15 30.15±0.94 68.86±0.27
GCE 70.45±0.40 64.73±0.21 54.10±0.16 29.58±0.26 68.88±0.18
SCE 69.43±0.20 64.68±0.45 55.07±0.52 29.85±0.44 69.00±1.22
DAC 64.45±0.31 59.73±0.27 47.44±0.09 26.69±0.34 68.06±1.32
APL 70.05±0.41 66.22±0.10 52.51±0.66 30.90±0.37 68.31±0.77
SAT 68.98±0.63 63.43±0.72 52.84±0.38 29.60±0.53 67.06±0.55
ELR 71.43±0.80 66.34±0.48 55.22±0.73 31.24±0.19 69.38±0.49

REGSL (ours) 72.51±0.46 68.13±0.16 57.59±0.55 34.08±0.79 70.12±0.83

our approach improves upon the best regularization methods by 1.17% averaged over two settings.
Second, we find that our approach also improves upon self-labeling by 13.57% averaged over
two settings. These two results again highlight that both regularization and self-labeling contribute
to the final result. While regularization prevents the model from overfitting to the random labels,
self-labeling injects the belief of the fine-tuned model into the noisy data set.

Table 4: Test accuracy with 95% confidence
interval for fine-tuning ResNet-12 over 600
meta-test splits of miniImageNet.

Methods miniImageNet

5-way-1-shot 5-way-5-shot

Fine-tuning 60.56 ± 0.78 76.42 ± 0.36
`2-Norm 60.93 ± 0.81 76.57 ± 0.55
LS 61.31 ± 0.77 76.73 ± 0.62
`2-SP 61.48 ± 0.76 77.02 ± 0.62
`2-PGM 61.35 ± 0.83 77.33 ± 0.59

REGSL (ours) 61.71 ± 0.77 78.03 ± 0.54

Extension to few-shot classification. We extend our
approach to a few-shot image classification task. We
compare our approach to the baseline regularization
methods. In Table 4, we report the average accu-
racy of 600 sampled tasks from the meta-test split of
the miniImageNet benchmark (Vinyals et al., 2016).
We find that our layer-wise regularization method
achieves 0.75% improvement on average compared
to previous regularization methods. Additionally, reg-
ularization methods generally improve the perfor-
mance of fine-tuning by over 1%.

Ablation studies. We study the influence of remov-
ing each component from our algorithm. Results
shown in Table 11 (cf. Section B.3) suggest that they all degrade performance. Thus, all three
components in Algorithm 1 contribute to the final performance. The importance of each component
depends on the noise rate. In particular, if the noise rate is higher than 40%, label-correction is the
most critical component. Other ablation studies we present include: comparing the `2 norm and
the MARS norm in our algorithm and comparing the distance parameters between layer-wise and
constant regularization. We leave the details to Section B.3.

6 Conclusion

This paper studied regularization methods for fine-tuning as well as their robustness properties. We
investigated the generalization error of fine-tuning using PAC-Bayesian techniques. This leads to two
empirical measures, which we empirically computed. The analysis inspired us to consider layer-wise
regularization for fine-tuning. This approach performs well on both pre-trained ResNets and ViTs;
we have found the fine-tuned distance using vanilla fine-tuning and encoded the distance patterns
in layer-wise regularization. We then evaluated the performance of regularized fine-tuning from
noisy labels. We proposed a self label-correction and label-reweighting approach in the noisy setting.
We found that regularization and self-labeling complement each other in our experiments, leading
to significant improvement over previous methods, which either use regularization methods or use
self-labeling methods but not both. We discuss the limitation of our work in Section C.

Negative societal impacts. Our work concerns the theory and the empirical performance of fine-
tuning for transfer learning. Due to its technical nature, there is very little negative societal impact.
Since transfer learning is commonly used in practice, one avenue that deserves attention for these
applications is to carefully evaluate bias or fairness metrics before applying our proposed approaches.
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A Proof of Theorem 4.1

Background. PAC-Bayesian generalization theory offers a nice way to blend data-dependent proper-
ties such as noise stability and sharpness into generalization bounds. Recent works (e.g., Bartlett et al.
(2017); Neyshabur et al. (2018)) introduced generalization bounds for multi-layer neural networks
in an attempt to explain why neural network models generalize well despite having more trainable
parameters than the number of training examples. On the one hand, the VC dimension of a neural
network is known to be roughly equal to its number of parameters (Bartlett et al., 2019). On the
other hand, the number of parameters is not a good capacity measure for neural nets, as evidenced by
the popular work of Zhang et al. (2016). The bounds of Bartlett et al. (2017) (and follow-up works)
provide a more meaningful notion of “capacity” compared to VC-dimension.

While these bounds constitute an improvement compared to classical learning theory, it is unclear if
these bounds are tight or non-vacuous. One response to this criticism is a computational framework
from Dziugaite and Roy (2017). That work shows that directly optimizing the PAC-Bayes bound
leads to a much smaller bound and low test error simultaneously (see also Zhou et al. (2018) for
a large-scale study). The recent work of Jiang et al. (2020) further compared different complexity
notions and noted that the ones given by PAC-Bayes tools correlate better with empirical performance.
In particular, we will use the following classical result (McAllester, 1999a,b).
Theorem A.1 (Theorem 1 in McAllester (1999a)). LetH be some hypothesis class. Let P be a prior
distribution on H that is independent of the training set. Let QS be a posterior distribution on H
that may depend on the training set S. Suppose the loss function is bounded from above by C. With
probability 1− δ over the randomness of the training set, the following holds

E
h∼QS

[L(h)] ≤ E
h∼QS

[
L̂(h)

]
+ C

√
KL(QS || P ) + 3 ln n

δ + 8

n
. (8)

We remark that the original statement in McAllester (1999a) requires the loss function is bounded
between 0 and 1. The above statement modifies the original statement and instead applies to a loss
function bounded between 0 and C, for some fixed constant C > 0. This is achieved by rescaling
the loss by 1/C, leading the C factor in the right hand side of equation (8). To invoke the above
result in our setting, we set the prior distribution P = N (Ŵ (s), σ2 Id), where Ŵ (s) are the weights
of the pre-trained nework. The posterior distribution QS is centered at the fine-tuned model as
N (Ŵ , σ2 Id). Based on the above result, we present the proof of Theorem 4.1.

Proof of Theorem 4.1. First, we show that the KL divergence between P andQS is equal to 1
2σ2 ‖Ŵ−

Ŵ (s)‖2. We expand the definition using the density of multivariate normal distributions.

KL(P || QS) = E
W∼P

[
log

(
Pr(W ∼ P )

Pr(W ∼ QS)

)]
= E
W∼P

[
log

exp(− 1
2σ2 ‖W − Ŵ (s)‖2)

exp(− 1
2σ2 ‖W − Ŵ‖2)

]

= − 1

2σ2 E
W∼P

[
‖W − Ŵ (s)‖2 − ‖W − Ŵ‖2

]
=

1

2σ2 E
W∼P

[
〈Ŵ (s) − Ŵ , 2W − Ŵ (s) − Ŵ 〉

]
=

1

2σ2
‖Ŵ − Ŵ (s)‖2

F
≤
∑L
i=1D

2
i

2σ2
,

where the last line uses the fact that ‖Ŵi − Ŵ (s)
i ‖F ≤ Di, for all 1 ≤ i ≤ L.

Next, let the dimension of Wi be di−1 times di, for every i = 1, 2, . . . , L. In particular, d0 is equal to
the dimension of the input data points. Let H = max0≤i≤L di be the maximum matrix dimension
size across all the L layers. Let e = σ

√
2H log(2L ·H/δ). We show that for any δ > 0 and any

L-layer feedforward neural network parameterized by W = [W1,W2, . . . ,WL], with probability at
least 1− δ, the perturbation QS increases the loss function L̂(h) by at most

C1 · e ·

(
L∑
i=1

∏L
j=1

(
‖Wj‖2 + e

)
‖Wi‖2 + e

)
. (9)
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Consider some data point (x, y) evaluated at a neural network function fW . Let Ui be a Gaussian
perturbation matrix on Wi with mean zero and entrywise variance σ2, for i = 1, . . . , L. Denote by
U = [U1, U2, . . . , UL]. Since `(x, y) is 1-Lipschitz over x, we get

|`(fW+U (x), y)− `(fW (x), y)| ≤ ‖fW+U (x)− fW (x)‖2. (10)

Since Ui ∈ Rdi−1×di is a random matrix with i.i.d. entries sampled from the standard Gaussian
distribution, we can upper bound the operator norm of Ui by applying well-known concentration
results. In particular, by equation (4.1.8) and section (4.2.2) of Tropp (2015), we get

Pr
[ 1
σ
‖Ui‖2 ≥ t

]
≤ (di−1 + di) · exp

(
− −t2

2max(di−1, di)

)
. (11)

Thus, for all i = 1, 2, . . . , L, with probability at most δ/L, we have that

1

σ
‖Ui‖2 ≤

√
2H log(2L ·H/δ). (12)

In particular, the right hand side above is obtained by setting 2H exp
(
− t2

2H

)
= δ/L and solve for

t =
√
2H log(2L ·H/δ). Since the right hand side of equation (11) is at most 2H exp

(
− t2

2H

)
, by

union bound, we conclude that with probability at most 1− δ, for all i = 1, 2, . . . , L, the operator
norm of Ui is at most σ ·

√
2H log(2L ·H/δ).

Let zi be the input to the i-th layer of fW . Let z̃i be the input to the i-th layer of fW+U . We can
expand the right hand side of equation (10) as

‖ψL((WL + UL)z̃L)− ψL(WLzL)‖2 (13)
≤‖(WL + UL)z̃L −WLzL‖2 (since ψL(·) is 1-Lipschitz)
≤‖WL(z̃L − zL)‖2 + ‖ULz̃L‖2 (by triangle inequality)
≤‖WL‖2 · ‖z̃L − zL‖2 + ‖ULz̃L‖2 (‖Wx‖2 ≤ ‖W‖2 · ‖x‖2 for any vector x)

≤‖WL‖2 · ‖z̃L − zL‖2 + σ ·
√
2H log(2L ·H/δ) · ‖z̃L‖2, (14)

where the last step is by equation (12). Recall from Section 3 that the i-th layer takes an input z and
outputs ψi(Wiz), for every i = 1, . . . , L. Because we have assumed that ψi(·) is 1-Lipschitz, for all
i = 1, . . . , L− 1, we can bound

‖z̃L‖2 = φL−1 ◦ φL−2 · · · ◦ φ1(x) ≤
( L−1∏
i=1

‖Wi + Ui‖2
)
· ‖x‖2

≤
( L−1∏
i=1

‖Wi + Ui‖2
)
· C1 (since ‖x‖2 ≤ C1 for x ∈ X )

≤
( L−1∏
i=1

(‖Wi‖2 + e)
)
· C1. (by equation (12))

Applying the above to equation (14), we have shown

‖fW+U (x)− fW (x)‖2 ≤ ‖WL‖2 · ‖z̃L − zL‖2 + σ ·
√
2H log(2L ·H/δ) ·

(∏L−1
i=1 (‖Wi‖2 + e)

)
· C1. (15)

Next, we can expand the difference between z̃L = ψL−1((WL−1 + UL−1)z̃L−1) and zL =
ψL−1(WL−1zL−1) similar to equation (13). In general, for any i = 1, 2, . . . , L, we get

‖z̃i − zi‖2 ≤ ‖Wi−1‖2 · ‖z̃i−1 − zi−1‖2 + σ ·
√

2H log(2L ·H/δ) ·
(∏i−2

i=1(‖Wi‖2 + e)
)
· C1. (16)

By repeatedly applying equation (16) together with equation (15) (relaxing ‖Wi‖2 to ‖Wi‖2 + e),
we can show that with probability at least 1− δ,

‖fW+U (x)− fW (x)‖2 ≤ σ · C1

√
2H log(2L ·H/δ) ·

( L∑
i=1

∏L
j=1(‖Wj‖2 + e)

‖Wi‖2 + e

)
.
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Combined with equation (10), we have shown that equation (9) holds. Finally, with equation (9) and
the fact that that the loss function `(·) is bounded from above by some fixed value C2, we can bound
the expectation of L̂(h) for some h ∼ QS as

Eh∼QS
[
L̂(h)

]
≤ L̂(fŴ ) + (1− δ) · σ · C1

√
2H log

(
2L·H
δ

)
·
(∑L

i=1

∏L
j=1(‖Ŵj‖2+e)
‖Ŵi‖2+e

)
+ δ · C2, (17)

Note that the above inequality applies for any (small) value of δ. Thus, we can minimize the right
hand side by appropriately setting δ. For our purpose, we will show that there exists some δ such that
the right hand side of equation (17) (leaving out L̂

(
fŴ
)
) is at most

2σC1

( L∑
i=1

∏L
j=1(‖Ŵj‖2 + e)

‖Ŵi‖2 + e

)
·
√
2H log

(
4L ·H · C2

)
. (18)

To see that the above is true, we will abstract away the precise scalars and instead write the right hand
side of equation (17) as g(δ) = (1− δ)A1

√
log(A2/δ) + C2δ, for some fixed A1 and A2 that does

not depend on δ. We note that subject to

C2δ ≤ (1− δ)A1

√
log(A2/δ), (19)

g(δ) is at most

g(δ) ≤ 2(1− δ)A1

√
log(A2/δ) ≤ 2A1

√
log
(A2

δ

)
. (20)

Therefore, we only need to lower bound δ based on the constraint (19). In particular, the largest
possible δ? under constraint (19) is achieved when both sides equal:

C2δ
? = (1− δ?)A1

√
log(A2/δ?) ≥

A1

2

√
log(A2),

which implies that δ? ≥ A1

2C2

√
log(A2). Thus, we have shown that g(δ?) is less than equation (18),

using equation (20) and the lower bound on δ?. Additionally, A1 is on the order of a fixed constant
based on σ defined below.

Using a similar argument since our bound on the perturbed loss holds point-wise for every x ∈ X ,
we can likewise prove that with probability 1− δ,

E
h∼QS

[L(h)] ≥ L(fŴ )− 2σC1

( L∑
i=1

∏L
j=1(‖Ŵj‖2 + e)

‖Ŵi‖2 + e

)
·
√
2H log(4L ·H · C2).

By applying equation (18) and the above to equation (8) in Theorem A.1, we thus conclude that for
any σ, with probability at least 1− 2δ over the training data set, the following holds

L(fŴ ) ≤ L̂(fŴ ) + 4σ · C1 ·
√
2H log(4L ·H · C2)

(∑L
i=1

∏L
j=1(‖Ŵj‖2+e)
‖Ŵi‖2+e

)
+ C2

√∑L
i=1

D2
i

2σ2
+3 ln n(t)

δ +8

n(t) . (21)

Since ‖Ŵ (s)
i ‖2 ≤ Bi and ‖Ŵi−Ŵ (s)

i ‖F ≤ Di, for any i = 1, . . . , L, we have that ‖Ŵi‖2 ≤ Bi+Di.
Thus, we can upper bound the above by replacing every ‖Ŵi‖2 with Bi +Di.

By setting σ = ε

6σC1·α
√

2H log(4LHC2)
where α =

(∑L
i=1

∏L
j=1(Bj+Dj)

Bi+Di

)
, we get e ≤ 1

6α since

C1 ≥ 1. To finish the proof, we will show
L∑
i=1

∏L
j=1(Bj +Dj + e)

Bi +Di + e
≤ 3α/2.

In particular, we will show that for every k = 1, 2, . . . , L, e ≤ Bk+Dk
6L . To see this, recall thatBk ≥ 1

and Dk ≥ 0. Therefore, α ≥ L for every k and e ≤ 1
6α ≤

Bk+Dk
6L . This implies

L∑
i=1

∏L
j=1(Bj +Dj + e)

(Bi +Di + e)
≤
(
1 +

1

6L

)L−1
L∑
i=1

∏L
j=1(Bj +Dj)

Bi +Di
≤ 3

2
α.
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Table 5: Top-1 test accuracy on CUB-200-2011 and Flowers dataset with independent label noise
injected in the training set. Results are averaged over 3 random seeds.

Datasets Methods independent noise
20% 40% 60% 80%

CUB-200-2011

Fine-tuning 68.28 ± 0.34 56.88 ± 0.38 39.54 ± 0.42 16.21 ± 0.38
LS 69.89 ± 0.85 59.18 ± 0.43 41.58 ± 0.45 16.96 ± 0.45

`2-PGM 69.71 ± 0.31 58.91 ± 0.42 41.52 ± 0.74 16.76 ± 0.41
GCE 69.54 ± 0.25 60.15 ± 0.93 41.84 ± 0.47 17.77 ± 0.32
SCE 70.68 ± 0.67 61.33 ± 0.57 43.67 ± 0.37 17.62 ± 0.19
DAC 68.58 ± 0.25 57.37 ± 0.29 40.00 ± 0.37 15.92 ± 0.83
APL 70.59 ± 0.18 59.68 ± 0.69 40.46 ± 0.24 14.69 ± 0.36
SAT 68.69 ± 0.38 57.34 ± 0.18 38.75 ± 0.40 15.14 ± 0.20
ELR 69.92 ± 0.14 58.69 ± 0.02 40.76 ± 0.68 16.68 ± 0.79

REGSL (ours) 71.76 ± 0.49 62.79 ± 0.23 45.85 ± 0.66 17.88 ± 0.25

Flowers

Fine-tuning 83.13 ± 0.15 72.23 ± 0.40 55.27 ± 0.32 29.35 ± 0.74
LS 83.62 ± 0.30 72.35 ± 0.47 54.23 ± 0.24 28.60 ± 0.45

`2-PGM 83.45 ± 0.70 73.24 ± 0.20 56.51 ± 0.40 31.04 ± 0.88
GCE 83.09 ± 0.22 71.74 ± 0.65 54.73 ± 0.90 28.38 ± 0.95
SCE 83.45 ± 0.14 73.11 ± 0.05 55.96 ± 0.97 29.22 ± 0.07
DAC 83.40 ± 0.27 72.73 ± 0.34 55.27 ± 0.40 28.95 ± 0.89
APL 83.42 ± 0.11 72.06 ± 0.23 54.96 ± 0.36 28.86 ± 0.64
SAT 82.49 ± 0.25 72.52 ± 0.28 55.10 ± 0.50 27.82 ± 0.38
ELR 83.38 ± 0.38 72.53 ± 0.48 55.74 ± 0.42 30.17 ± 0.26

REGSL (ours) 83.79 ± 0.39 73.32 ± 0.66 57.52 ± 0.15 31.09 ± 0.25

Thus, plugging in the value of σ above, we conclude that the second term in equation (21) is at most
ε. By applying the value of σ to the third term in equation (21), we conclude

L(fŴ ) ≤ L̂(fŴ ) + ε+ C2

√
36
ε2
·C2

1H log(4LHC2)

(∑L
i=1

∏L
j=1

(Bj+Dj)

Bi+Di

)2(∑L
i=1D

2
i

)
+3 ln n(t)

δ +8

n(t) .

Thus, we have proved equation (4) is true. The proof is complete.

Implication. Our result implies a tradeoff in setting the distance parameter Di. While a larger Di

increases the network’s “capacity”, the generalization bound gets worse as a result.

B Extended experimental setup and results

B.1 Additional details of the experimental setup

We extend the details of our experiment setup. First, we introduce the data sets in our experiments
and describe the pre-processing steps. Second, we present the model architectures and the fine-tuning
procedures. Third, we describe the baselines in detail. Finally, we describe the implementation and
the hyperparameters for our algorithm and the baselines.

Data sets. We evaluate fine-tuning on seven image classification data sets covering multiple applica-
tions, including fine-grained object recognition, scene recognition, and general object recognition.
We divide each dataset into the training set, the validation set, and the test set for data split. We
adopt the standard splitting of data given in the Aircrafts dataset (Maji et al., 2013). For Caltech-256
dataset (Griffin et al., 2007), we use the setting in Li et al. (2018b) that randomly samples 30, 20, 20
images of each class for training, validation, and test set, respectively. For other data sets, we split
10% of the training set as the validation set and use the standard test set. We describe the statistics
of the seven data sets in Table 1. When fine-tuning on the seven data sets, we preserve the original
pixel and resize the shorter side to 256 pixels. The image samples are normalized with the mean
and std values over ImageNet data (Russakovsky et al., 2015). Moreover, we apply commonly used

18



Table 6: Left: Mean AUROC of fine-tuning ResNet-18 on the ChestX-ray14 data set. Right: Top-1
accuracy of fine-tuning ViT on the indoor data set. Results are averaged over 3 random seeds.

(a) The ChestX-ray14 data set.

Methods Mean AUROC

Fine-tuning 0.8159 ± 0.0667
`2-Norm 0.8198 ± 0.0644
LS 0.7885 ± 0.0578
`2-SP 0.8231 ± 0.0658
`2-PGM 0.8235 ± 0.0636

REGSL (ours) 0.8274 ± 0.0654

(b) The indoor data set.

Methods Independent Noise

40% 80%

Fine-tuning 75.87 ± 1.15 32.06 ± 3.17
Regularization 82.66 ± 0.44 63.01 ± 0.83
Self-labeling 79.13 ± 0.37 41.69 ± 0.16

REGSL (ours) 83.48 ± 0.29 64.50 ± 0.53

data augmentation methods on the training samples, including random scale cropping and random
flipping. The images are resized to 224× 224 as the input for the model. The training and batch size
are both 16.

To test the robustness of fine-tuning, we evaluate Algorithm 1 under two different settings with label
noise. We select MIT-Indoor dataset (Sharif Razavian et al., 2014) as the benchmark dataset and
randomly flipped the labels of the training samples. The results for the other datasets are similar,
which can be found in Appendix B.2. We consider two scenarios of label noise in our experiments,
independent random noise and correlated noise. Random label noise is generated by flipping the
labels of a given proportion of training samples to other classes uniformly. For the correlated noise
setting, the label noise is dependent on the sample. We simulate the correlated noisy label by training
an auxiliary network on a held-out dataset to a certain accuracy. We then use the prediction of the
auxiliary network as noisy labels. For few-shot learning, we conduct experiments on a few-shot
image recognition benchmark, miniImageNet (Vinyals et al., 2016) and follow the meta training and
meta test setup in Tian et al. (2020).

Architectures. For image data sets, we use ResNet-101 (He et al., 2016) network which is pre-trained
on ImageNet dataset (Russakovsky et al., 2015). For the label-noise experiments, we mainly use
ResNet-18 (He et al., 2016) network. In the transfer learning and label-noise experiments, we fine-
tune the model with Adam optimizer (Kingma and Ba, 2014) with an initial learning rate 0.0001 for
30 epochs and decay the learning rate by 0.1 every 10 epochs. We report the average Top-1 accuracy
on the test set of 3 random seeds. For the few-shot learning tasks, we use ResNet-12 pre-trained on
the meta-training dataset as in the previous work (Tian et al., 2020). To fine-tune on the meta-test
sets, we use Adam optimizer (Kingma and Ba, 2014) with an initial learning rate 5e−5 and fine-tune
the model on the training set for 25 epochs. We report the average classification accuracies on 600
sampled tasks from the meta-test split.

Baselines. For the transfer learning tasks, we focus on using the Frobenius norm for distance
regularization. We present ablation studies to compare the Frobenius norm and other norms in
Appendix B.2. we compare our algorithm with fine-tuning with early stop (Fine-tuning), fine-tuning
with weight decay (`2-Norm), label smoothing (LS) method formulated in (Müller et al., 2019),
`2-SP (Li et al., 2018b), and `2-PGM (Gouk et al., 2021). For testing the robustness of our algorithm,
in addition to the baselines described above, we adopt several baselines that have been proposed in
the supervised learning setting, including GCE (Zhang and Sabuncu, 2018), SCE (Wang et al., 2019),
DAC (Thulasidasan et al., 2019), APL (Ma et al., 2020), ELR (Liu et al., 2020) and self-adaptive
training (SAT) (Huang et al., 2020). We compare with the same fine-tuning baselines in transfer
learning for the few-shot classification tasks.

Implementation and hyperparameters. For all baselines and data sets, all regularization hyperpa-
rameters are searched on the validation dataset by the Optuna optimization framework (Akiba et al.,
2019). In our proposed algorithm, we search the constraint distance D in [0.05, 10] and the distance
scale factor γ in [1, 5] by sampling. For setting layer-wise constraints, we set four different constraints
for the four blocks of the ResNet. Concretely, ResNet-101 has four blocks, with 10, 13, 67, and 10
convolutional layers for each block, respectively. For every block, we set the same constraint value
for all the layers within the block. Therefore, there are four distance values (D,D · γ,D · γ2, D · γ3)
each block. Similar constraints are set for ResNet-18 and ResNet-12 models in the experiments. The
search space for other hyperparameters is shown as follows. Re-weight start step Er is searched in
{3, 5, 8, 10, 13}. Re-weight temperature factor γ is searched in {3.0, 2.0, 1.5, 1.0}. Label correction
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Table 7: Top-1 accuracy of fine-tuning a three-layer feed forward network pre-trained on SST with
no label noise and with independent label noise. Results are averaged over 5 random seeds.

Noise Rate 0% MR CR MPQA SUBJ TREC

Fine-tuning 83.37±0.70 83.29±0.80 87.56±0.70 93.14±0.42 83.28±0.86
`2-PGM 84.16±0.41 83.87±0.66 87.77±0.62 93.16±0.21 84.48±0.52
REGSL (ours) 84.20±0.47 84.35±0.60 87.95±0.65 93.50±0.17 83.73±0.75

Noise Rate 40% MR CR MPQA SUBJ TREC

Fine-tuning 82.91±0.25 77.67±1.11 82.85±0.98 90.78±0.88 70.80±0.22
`2-PGM 83.45±0.28 79.47±0.37 84.03±0.41 72.14±0.21 73.48±0.90
REGSL (ours) 83.54±0.40 79.89±0.51 84.15±0.99 72.48±0.45 74.80±0.87

Table 8: Comparing
∑L
i=1D

2
i between layer-wise and constant regularization.

Aircrafts CUB-200-2011 Caltech-256 Stanford-Cars Stanford-Dogs Flowers MIT-Indoor

Layer-wise 250.20 840.09 90.42 4150.02 20.72 252.45 57.16
Constant 2465.05 1225.69 195.72 2480.08 211.78 3151.28 295.49

start step Ec is searched in {5, 8, 10, 13, 15}. Label correction threshold p is set as 0.90 in all experi-
ments. The validation set sizes used for evaluating these hyperparameters choices range from 536 to
5120 (cf. Table 1). For the results in Table 2, we search for 20 different trials of the hyperparameters
for the proposed algorithm and the baselines. For the results in Table 3, we search 20 times on the
self-labeling parameters and 20 times on the regularization parameters. For the few-show learning
experiments in Table 4, we use the validation set of Mini-ImageNet, following the training procedure
of Dhillon et al. (2019) and search for 20 different trials.

We report the results for baselines by running the official open-sourced implementations. We describe
the hyperparameters space for baselines as follows. For GCE (Zhang and Sabuncu, 2018), we search
the factor q in their proposed truncated loss Lq in {0.4, 0.8, 1.0} and set the factor k as 0.5. We also
search the start pruning epoch in {3, 5, 8, 10, 13}. For SCE (Wang et al., 2019), we search the α and
A in their proposed symmetric cross entropy loss. The factor α is searched in {0.01, 0.10, 0.50, 1.00},
and the factor A is searched in {−2,−4,−6,−8}. For DAC (Thulasidasan et al., 2019), we search
the start abstention epoch in {3, 5, 8, 10, 15} and set the other hyperparameters as the same in their
paper. For APL (Ma et al., 2020), we choose the active loss as normalized cross entropy loss and
the passive loss as reversed cross entropy loss. We search the loss factor α in {1, 10, 100} and β in
{0.1, 1.0, 10}. For ELR (Liu et al., 2020), we search the momumtum factor β in {0.5, 0.7, 0.9, 0.99}
and the weight factor λ in {0.05, 0.3, 0.5, 0.7}. For SAT (Huang et al., 2020), the start epoch is
searched in {3, 5, 8, 10, 13}, and the momumtum is searched in {0.6, 0.8, 0.9, 0.99}. We use the
same number of trials in tuning hyperparameters for baselines.

B.2 Extended experimental results

We present additional results. First, we apply our algorithm to another data set with label noise (same
label noise as Table 3). Second, we apply our algorithm to sentence classification tasks.

Additional results under label noise. We report the test accuracy results of our algorithm on CUB-
200-2011 and Flowers data sets with independent label noise in Table 5. From the table, we show
that our algorithm still outperforms previous methods by a significant margin, which aligns with our
results of the MIT-Indoor data set in Table 3.

Results on ChestX-ray14. We apply our approach to medical image classification, which is a more
distant transfer task (relative to the source data set ImageNet). We report the mean AUROC (averaged
over predicting all 14 labels) on the ChestX-ray14 data set in Table 6a. With layer-wise regularization,
we see 0.39% improvement compared to the baseline methods.

Results on ViT. We apply our approach to fine-tuning pre-trained ViT (Dosovitskiy et al., 2020)
from noisy labels, under the same setting as Table 3). Table 6b shows the result. First, we find that
our approach improves upon the best regularization methods by 1.17% averaged over two settings.
Second, we find that our approach also improves upon self-labeling by 13.57% averaged over two
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Figure 6: Frobenious norms of each layer in ResNet-18 pre-trained with standard and adversarial
training methods from different noise levels (ε = 0.01, 0.25, 5). Higher ε implies lower norms.

settings. These two results again highlight that both regularization and self-labeling contribute to
the final result. While regularization prevents the model from over-fitting to the random labels,
self-labeling injects the belief of the fine-tuned model into the noisy data set.

Extension to text classification. We apply our algorithm in text data domains. We conduct an
experiment on sentiment classification tasks using a three-layer feedforward neural network (or
multi-layer perceptron). We considered six text classification data sets: SST (Socher et al., 2013),
MR (Pang and Lee, 2005), CR (Hu and Liu, 2004), MPQA (Wiebe et al., 2005), SUBJ (Pang and
Lee, 2004), and TREC (Li and Roth, 2002). We use SST as the source task and one of the other tasks
as the target task. We compared our proposed algorithm with fine-tuning and L2-PGM (Gouk et al.,
2021). In Table 7, we report the results evaluated under a setting with no label noise and a setting
with independent label noise (same setting in Table 3). The results show our proposed algorithm can
outperform these baseline methods under both settings.

B.3 Ablation studies

We describe several ablation studies. First, we compare the performance between using the Frobenius
norm and the MARS norm proposed in Gouk et al. (2021). Second, we show the norm values of the
adversarial robust pre-trained models in each layer and explain their improvement for fine-tuning on
downstream tasks. Third, we compare our proposed layer-wise constraints and a constant and discuss
their correlation to the generalization performance in Theorem 4.1. Fourth, we analyze the role of
regularization in our proposed self label-correction method. Finally, we conduct an ablation study to
study the influence of three components in our algorithm.

Comparing layer-wise and constant regularization:
∑L
i=1D

2
i . To show the bound in Proposition

4.1 is nonvacuous, We compare the value of
∑L
i=1D

2
i from Equation 4 under both layer-wise

constraints and constant regularization in Table 8. The values for everyDi are from the parameters set
in Table 2 for these data sets. We can see that layer-wise constraints incur a smaller value of

∑L
i=1D

2
i

compared to constant regularization, which correlates with their better generalization performance.

Comparing norms of adversarial robust pre-trained models. We empirically observe that adver-
sarially robust pre-trained models have lower Frobenius norms over each layer shown in Figure
6. The lower norms of robust models would induce smaller generation error, which explains their
improvement in fine-tuning downstream tasks.

Comparing label-correction precision with and without regularization. We observe from Figure
5a that combining self-labeling and regularization is more effective than using just self-labeling.
This is evidenced by the gap between correction with regularization and without regularization in
the figure. In Table 9, we show the denominator of relabeling precision (i.e., the overall number of
data points that are relabeled in line 7 of Algorithm 1) in the correction process. We find that the
denominator is different between with and without regularization. The denominator is significantly
smaller with regularization than without regularization, indicating that regularization prevents the
model from over-fitting the noisy labels. The denominator decreases only with regularization. Without
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Table 9: Denominator (total number of relabeled data points) and numerator (the number of correctly
relabeled data) for calculating precision of label-correction in Figure 5a.

Number of epoch 1 4 7 10 13 16 19 21

denominator w/ regularization 28 32 32 29 26 24 21 19
numerator w/ regularization 15 17 16 13 12 10 9 8
denominator w/o regularization 56 66 64 64 62 58 59 56
numerator w/o regularization 34 33 28 26 21 18 17 14

Table 10: Top-1 test accuracy of using different norms for fine-tuning ResNet-101 pre-trained on the
ILSVRC-2012 subset of ImageNet. Results are averaged over 3 random seeds.

Aircrafts CUB-200-2011 Caltech-256 Stanford-Cars Stanford-Dogs Flowers MIT-Indoor

PGM (MARS) 74.34±0.15 81.14±0.16 83.28±0.31 89.01±0.18 87.90±0.10 93.45±0.23 78.48±0.29
PGM (`2) 74.90±0.26 81.23±0.32 83.25±0.33 88.92±0.39 86.48±0.28 93.23±0.34 77.31±0.30
Ours (MARS) 75.10±0.32 82.03±0.32 85.33±0.33 89.29±0.25 90.94±0.28 93.67±0.34 79.40±0.30
Ours (`2) 75.32±0.23 82.24±0.21 84.90±0.16 89.14±0.22 89.58±0.13 93.82±0.35 79.30±0.31

Table 11: Removing any component in our algorithm leads to worst performance. Results are on the
Indoor data set with independent label noise. Results are averaged over 3 random seeds.

Indoor independent noise correlated noise
20% 40% 60% 80% 25.18%

REGSL (ours) 72.51±0.46 68.13±0.16 57.59±0.55 34.08±0.79 70.12±0.83
w/o regularization 71.94±0.43 67.84±0.38 57.24±0.43 33.78±0.30 69.43±0.36
w/o label correction 70.92±0.41 59.10±0.24 47.81±0.35 28.42±0.46 69.78±0.34
w/o label removal 70.32±0.65 66.57±0.76 55.37±0.28 29.43±0.88 67.96±0.49
w/o self-labeling 70.23±0.25 64.40±0.58 54.20±0.68 32.54±0.43 69.05±0.09

regularization, the denominator remains roughly the same. Additionally, the number of incorrectly
labeled data points by the self-labeling is much higher (e.g., 42 vs. 11 at epoch 21).

Comparing `2 norm and the MARS norm. We report the results of using different norms for
constraints in our algorithm in Table 10. We compare the performance of the Frobenius norm (`2),
and the MARS norm proposed in (Gouk et al., 2021). From the table, we show that the results of the
two norms are similar. In the paper, we focus on the Frobenius norm for our discussion.

Influence of different components in REGSL. We study the influence of each component of our
algorithm: layer-wise constraint, label correction, and label removal. We remove these components,
respectively, and run the same experiments on the MIT-Indoor dataset with different kinds of label
noise. Furthermore, we also include a row of results using only layer-wise constraints without
self-labeling (containing label correction and removal). As shown in Table 11, removing any
component from our algorithm could hurt the performance. This suggests that only incorporating
these components can prevent both over-fitting and label memorization of models. In addition, We can
see from Table 11 that when the noise rate is 20%, the self-labeling part (including label correction
and removal) is more critical than regularization. When the noise rate is 40% or higher, the label
correction part is the most important.

C Limitation

Our work focuses on the regularization and robustness properties of fine-tuning. We mainly focus on
feedforward neural networks, including convolutional neural networks. Thus, we have not considered
Other settings such as recurrent neural networks in this work. We mainly focus on independent label
noise for evaluating the robustness. Other types of label noise, for example, using weak supervision,
are not well-understood. This is left for future work. Finally, our treatment of label noise using
self-labeling is based on empirical heuristics. It would be fascinating to come up with a more
principled approach to tackle label noise.
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