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Abstract. We consider a Fisher market where agents submit their own
utility functions and money endowments to the market maker, who, up-
on receiving every agent’s report, derives market equilibrium prices and
allocations of the items. While agents may benefit by misreporting their
private information, we show that the percentage of improvement by a u-
nilateral strategic play, called incentive ratio, is rather limited—it is less
than 2 for linear markets and at most e1/e ≈ 1.445 for Cobb-Douglas
markets. We further prove that both ratios are tight.

1 Introduction

The Internet and world wide web have created a possibility for buyers and sellers
to meet at a marketplace where pricing and allocations can be determined more
efficiently and effectively than ever before. Market equilibrium, which ensures op-
timum fairness and efficiency, has become a paradigm for practical applications.
It is well known that a market equilibrium always exists given mild assumptions
on the utility functions of participating individuals [3].

However, there has been a major criticism on the market equilibrium in that
it has not taken strategic behaviors of buyers and sellers into consideration: In
a Fisher market, a market equilibrium price vector and associated allocations,
computed in terms of utility functions and money endowments from partici-
pants, may change even if one participant has a change in its utility function or
endowment. Hence, one may misreport his private information if it results in a
favorable solution.

This phenomenon was first observed by Adsul et al. [1] for linear and Chen et
al. [5] for Leontief utility functions. Existence of such manipulations may impede
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potential uses of market equilibrium as a solution mechanism. To overcome such
limitations, we explore the price of incentive of a participant in the market
equilibrium mechanism. We adopt the notion of incentive ratio [5] as the factor of
the largest utility gains that a participant may achieve by behaving strategically
in the full information setting (the formal definition is referred to Section 2). The
ratio characterizes the extent to which utilities can be increased by manipulations
of individuals. Similar ideas have been applied in auctions under the concept of
approximate strategic-proofness such as in [19, 14].

While the big space of manipulations may suggest that one can substantially
increase his utility by behaving strategically, surprisingly, it was shown in [5]
that for any Leontief utility market, the incentive ratio is upper bounded by 2.
In this paper, we study the incentive ratios of two other important functions:
linear and Cobb-Douglas utilities [2]. For both utility models, manipulations do
help to improve one’s obtained utility. The following example shows such a case
in a Cobb-Douglas market (a similar example for linear markets can be found
in [1]).

Example 1. In a Cobb-Douglas market, there are two items with unit supply
each and two buyers with endowments e1 = 1

2 , e2 = 1
2 and utility functions

u1(x, y) = x
1
4 y

3
4 , u2(x, y) = x

3
4 y

1
4 , respectively. When both buyers bid their

utility functions and endowments truthfully, the equilibrium price is p = ( 12 ,
1
2 ),

and the equilibrium allocations are ( 14 ,
3
4 ) and ( 34 ,

1
4 ); their utilities are u1 = u2 =

( 14 )
1
4 ( 34 )

3
4 . If buyer 1 strategically reports u′

1(x, y) = x
1
2 y

1
2 , then the equilibrium

price is p′ = ( 58 ,
3
8 ), and the equilibrium allocations are ( 25 ,

2
3 ) and ( 35 ,

1
3 ); their

utilities are u′
1 = ( 25 )

1
4 ( 23 )

3
4 and u′

2 = ( 35 )
3
4 ( 13 )

1
4 . Hence u′

1 > u1 and the first
buyer gets a strictly larger utility.

Our main results are the following, which bound the incentive ratios of linear
and Cobb-Douglas markets.

Theorem. For any linear utility market, the incentive ratio is less than 2, and
for any Cobb-Douglas utility market, the incentive ratio is at most e1/e ≈ 1.445.
Both ratios are tight.

Our results give a further evidence for the solution concept of market equilib-
rium to be used in practical applications—while one may improve his utility by
(complicated) manipulations, the increment is reasonably bounded by a smal-
l constant. Therefore, in a marketplace especially with incomplete information
and a large number of participants, identifying a manipulation strategy is rather
difficult and worthless. This echoes the results of, e.g., [18, 13], saying that, in
certain marketplaces, the fraction of participants with incentives to misreport
their bids approaches zero as the market becomes large.

Our proof for the incentive ratio of linear markets is built on a reduction
from fractional equilibrium allocations to an instance with integral equilibrium
allocations, preserving the incentive ratio. We then, using the seminal Karush,
Kuhn, Tucker (KKT) condition, show that if any participant is able to improve
his utility by a factor of at least 2, everyone else can simultaneously obtain a



utility increment. This, at a high level view, contradicts the market equilibrium
condition of the original setting.

For Cobb-Douglas utility markets, our proof lies on a different approach by
revealing interconnections of the incentive ratios of markets with different sizes.
In particular, we prove that the incentive ratio is independent of the number of
buyers, by showing a reduction from any n-buyer market to a 2-buyer market,
and vice versa. This result implies that the size of a market is not a factor to
affect the largest possible utility gain by manipulations. Given this property, we
restrict on a market with 2 buyers to bound the incentive ratio.

1.1 Related Work

Eisenberg and Gale [11] introduced a convex program to capture market equilib-
ria of Fisher markets with linear utilities. Their convex program can be solved
in polynomial time using the ellipsoid algorithm [12] and interior point algorith-
m [21]. Devanur et al. [9] gave the first combinatorial polynomial time algorithm
for computing a Fisher market equilibrium with linear utility function. The first
strongly polynomial time algorithm for this problem was recently given by Or-
lin [17]. For Cobb-Douglas market, Eaves [10] gave the necessary and sufficient
conditions for existence of the market equilibrium, and gave an algorithm to
compute a market equilibrium in polynomial time. Other computational studies
on different market equilibrium models and utilities can be found in, e.g., [7, 6,
4, 12, 8] and the references within.

The concept of incentive ratio, which quantifies the benefit of unilateral s-
trategic plays from a single participant, is in spirit similar to approximate truth-
fulness [19, 14]. In the study of incentive ratio, the focus is on classic market
designs with a stable outcome. It makes no attempt to consider the mechanism
itself, but rather, focuses on individual’s strategic plays and measures his benefit
due to the incentive incompatibility of the mechanism.

Organization. In Section 2, we define the market equilibrium mechanism mod-
el and the notion of incentive ratio. In Section 3 and 4, we consider linear and
Cobb-Douglas utility markets and derive matching incentive ratios, respectively.
We conclude our work in Section 5.

2 Preliminary

In a Fisher market M , there are a set of n buyers and a set of m divisible
items of unit quantity each for sale. We denote by [n] = {1, 2, · · · , n} and [m] =
{1, 2, · · · ,m} the set of buyers and items, respectively. Each buyer i has an
initial cash endowment ei > 0, which is normalized to be

∑n
i=1 ei = 1, and has a

utility function ui(xi), where xi = (xi1, . . . , xim) ∈ [0, 1]m is an allocation vector
denoting the amount that i receives from each item j.

An outcome of the market is a tuple (p,x), where p = (p1, . . . , pm) is a price
vector of all items and x = (x1, x2, . . . , xn) is an allocation vector. An outcome
is called a market equilibrium if the following conditions hold: (i) All items are



sold out, i.e.,
∑n

i=1 xij = 1 for j ∈ [m], and (ii) each buyer gets an allocation
that maximizes its utility under the constraint

∑
j∈[m] xijpj ≤ ei for the given

price vector. Such an equilibrium solution exists under a mild condition [3] on
the utility functions.

One extensively studied class of utility functions is that of Constant Elasticity
of Substitution (CES) functions [20]: For each i, its utility function ui(xi) =(∑m

j=1 αijx
ρ
ij

) 1
ρ , where −∞ < ρ < 1 and ρ ̸= 0, and αi = (αi1, . . . , αim) ≥ 0 is

a given vector associated with the buyer. The CES utility functions allow us to
model a wide range of realistic preferences of buyers, and have been shown to
derive, in the limit, a number of special classes. In this paper, we will consider
linear and Cobb-Douglas utility functions, which are derived when ρ → 1 and
ρ→ 0, respectively.

2.1 Incentive Ratio

Notice that a market equilibrium output crucially depends on the utility func-
tions and endowments that buyers hold. This implies, in particular, that if a
buyer manipulates his function or endowment, the outcome would be changed,
and the buyer may possibly obtain a larger utility. This phenomenon has been
observed for, e.g., linear [1] and Leontief functions [5]. One natural question is
that how much such benefits can be obtained from manipulations with respect
to the given market equilibrium rule (i.e., mechanism).

To this end, Chen et al. [5] defined the notion of incentive ratio to characterize
such utility improvements by manipulations. Formally, in a given market M , for
each buyer i ∈ [n], let ui(·) be his true private utility function and Ui be the
space of utility functions that i can feasibly report; note that ui ∈ Ui. Define
U = U1 × U2 × · · · × Un and U−i = U1 × · · · × Ui−1 × Ui+1 × · · · × Un. Another
private information that every buyer holds is his endowment ei. For a given
input, a vector of utility functions (u1, . . . , un) ∈ U and a vector of endowments
(e1, . . . , en), we denote by xi(u1, . . . , un; e1, . . . , en) the equilibrium allocation of
buyer i. In the market equilibrium mechanism, a buyer i can report any utility
function u′

i ∈ Ui and endowment e′i ∈ R+. The incentive ratio of buyer i in the
market M is defined to be

ζMi = max
u−i∈U−i,e−i∈R+n−1

max
u′
i
∈Ui,e

′
i
∈R+

ui(xi(u
′
i, u−i; e

′
i, e−i))

ui(xi(ui, u−i; ei, e−i))
.

In the above definition, the numerator is the largest possible utility of buyer i
when he unilaterally changes his bid.5,6 The incentive ratio of the market with

5 Note that for some utility functions, an equilibrium allocation may not be unique.
This may lead to different true utilities for a given manipulation bid. Our definition
of incentive ratio is the strongest in the sense that it bounds the largest possible
utility in all possible equilibrium allocations, which include, of course, a best possible
allocation.

6 Practically, a buyer can bid any endowment e′i. However, reporting a larger budget
results in a deficit in a resulting equilibrium, and thus, a negative utility. We therefore
assume without loss of generality that e′i ≤ ei for all buyers.



respect to a given space of utility functions U is defined as ζM = maxi∈[n] ζ
M
i .

Incentive ratio quantifies the benefit of strategic behaviors of each individual
buyer.

For the considered linear and Cobb-Douglas (or any other CES) utilities, the
true utility functions are characterized by the parameters (α1, α2, . . . , αn), where
each αi = (αi1, . . . , αim). The definition of incentive ratio can be simplified as
follows

ζCES = max
i∈[n]

max
α−i,e−i

max
α′
i
,e′

i
ui(xi(α

′
i, α−i; e

′
i, e−i))

ui(xi(αi, α−i; ei, e−i))
.

3 Linear Utility Functions

In this section, we will consider incentive ratio for linear utility functions, i.e.,
ui(xi) =

∑
j∈[m] αijxij . Our main result in this section is the following.

Theorem 1. The incentive ratio of linear markets is

ζ linear < 2.

Consider a given linear market M and an arbitrary input scenario (α, e)
where every buyer i bids utility vector αi = (αij)j∈[m] and endowment ei. Let

(p,x) be a market equilibrium of the instance (α, e). Let ri = ui(xi)
ei

be the
bang-per-buck of buyer i, where xi = (xij)j∈[m] is the allocation of buyer i in
the equilibrium. The Karush, Kuhn, Tucker (KKT) condition [16] implies that
for any item j, if xij > 0 then

αij

pj
= ri, and if xij = 0 then

αij

pj
≤ ri.

Consider any fixed buyer, say i∗, and a scenario when all other buyers keep
their bids and i∗ unilaterally changes his bid to α′

i∗ = (α′
i∗j)j∈[m] and e′i∗ . Denote

the resulting instance by (α′, e′) = (α′
i∗ , α−i∗ ; e

′
i∗ , e−i∗) and its equilibrium by

(p′,x′). For each buyer i ∈ [n], define

ci =
ui(x

′
i)

ui(xi)
=

∑
j∈[m] αijx

′
ij∑

j∈[m] αijxij

to be the factor of utility changes of the buyer. Note that ci∗ gives the factor
of how much more utility that i∗ can get by manipulation. For the new setting
(α′, e′), the utility of buyer i is changed by a factor of ci; thus, his bang-per-buck
is changed by a factor of ci as well, i.e., becomes rici.

Lemma 1. ci∗ < 2.

Note that our discussions do not rely on any specific initial instance (α, e)
and manipulation (α′, e′). Thus, the above lemma immediately implies that the
incentive ratio of buyer i∗ is less than 2, i.e., ζMi∗ < 2. The same argument
holds for all other buyers. Therefore, ζ linear < 2 and Theorem 1 follows. In the
remaining of this section, we will prove this lemma.

In our proof, we assume that all input utility coefficients and endowments
are rational numbers; thus, the computed equilibrium is composed of rational



numbers as well. To simplify the proof, we first reduce an equilibrium with frac-
tional allocations to an instance with integral equilibrium allocations, preserving
the factor ci of utility gains.

Proposition 1. In the given market M , there exist another two linear market
instances, where one is derived from the other by one strategic play of a buy-
er, such that they admit {0, 1}-integral equilibrium allocations and ci remains
unchanged for all buyers.

By the above claim, in the following we assume without loss of generality
that the two equilibrium allocations x and x′ are {0, 1}-integral. That is, for
any i ∈ [n] and j ∈ [m], xij , x

′
ij ∈ {0, 1}. Let Si = {j ∈ [m] | xij = 1} and

S′
i = {j ∈ [m] | x′

ij = 1} be the sets of items allocated to buyer i in the two
allocations, respectively.

Proposition 2. For any buyer i,
∑

j∈S′
i
pj ≥ ciei.

Proof. Since the allocations xi and x′
i are integral, we have

ci =
ui(x

′
i)

ui(xi)
=

∑
j∈S′

i
αij∑

j∈Si
αij

For j ∈ Si, we have
αij

pj
= ri. Thus,∑

j∈Si

αij =
∑
j∈Si

ripj = riei

For j ∈ S′
i, we have

αij

pj
≤ ri. Thus,∑

j∈S′
i

αij ≤ ri ·
∑
j∈S′

i

pj

Therefore, ∑
j∈S′

i

pj ≥
1

ri

∑
j∈S′

i

αij =
ci
ri

∑
j∈Si

αij =
ci
ri
riei = ciei.

The claim follows. �

Proposition 3. Consider any buyer i ̸= i∗ and any item j ∈ [m]. If j ∈ Si,
then ci ≥ pj

p′
j
; if j ∈ S′

i, then
pj

p′
j
≥ ci.

Proof. Note that the bids of buyer i in the two scenarios (α, e) and (α′, e′) are
the same. If j ∈ Si, we have

αij

pj
= ri and

αij

p′
j
≤ rici; therefore, ci ≥ pj

p′
j
. If j ∈ S′

i,

we have
αij

p′
j
= rici and

αij

pj
≤ ri; thus,

pj

p′
j
≥ ci. �

Finally, we are ready to prove Lemma 1.



Proof (of Lemma 1). Assume to the contrary that ci∗ ≥ 2. By Proposition 2,∑
j∈S′

i∗
pj ≥ ci∗ei∗ . Since

∑
j∈Si∗∩S′

i∗
pj ≤

∑
j∈Si∗

pj = ei∗ , we have∑
j∈S′

i∗\Si∗

pj ≥ (ci∗ − 1) · ei∗

Further, we have
∑

j∈S′
i∗\Si∗

p′j ≤
∑

j∈S′
i∗
p′j = e′i∗ . Hence,∑

j∈S′
i∗\Si∗

pj∑
j∈S′

i∗\Si∗
p′j
≥ (ci∗ − 1) · ei∗

e′i∗
, ∆

This implies there exists j ∈ S′
i∗ \Si∗ such that

pj

p′
j
≥ ∆. Let R denote the set of

all such items in S′
i∗ \ Si∗ . From the above discussion, we have R ̸= ∅.

Consider the following iterative procedure:

1. Initialize: Let A = {i∗} and T = {i | Si ∩R ̸= ∅} (note that T ̸= ∅).
2. Do the following until T = ∅:

– Pick an arbitrary i ∈ T .
– Let T ← T \ {i} and A← A ∪ {i}.
– Let T ← T ∪ {k /∈ A ∪ T | Sk ∩ (S′

i \ Si) ̸= ∅}.

Intuitively, in each iteration, we find all buyers that win some items from the
set S′

i \ Si in the equilibrium allocation x. Our main observation is that, for all
buyers ever added to T in the procedure, their utility gains by manipulations
are at least ∆. We prove this by induction on the iterations.

In the initialization step, this fact is true for all buyers in T : For any i ∈ T ,
by the definition of T and Proposition 3, there exists an item j ∈ Si∩R such that
ci ≥ pj

p′
j
. By the definition of R,

pj

p′
j
≥ ∆. Therefore, we have ci ≥ ∆. Next, we

consider the induction step. For any buyer k added to T during the procedure,
since Sk∩(S′

i\Si) ̸= ∅, let j be an item in Sk∩(S′
i\Si). By Proposition 3, we have

ck ≥ pj

p′
j
≥ ci. Since i used to be in T , by induction hypothesis, ci ≥ ∆; hence,

ck ≥ ∆. Therefore, for any buyer k ever added to T in the process, ck ≥ ∆.
Note that the iterative procedure must terminate as every buyer can be added

into T at most once. We consider the subset A at the end of the procedure,
which includes all buyers ever added into T . Note that since the initial T ̸= ∅,
A \ {i∗} ̸= ∅. By the rule of updating T , we know that all items in R and S′

i (for
all i ∈ A \ {i∗}) are bought by buyers in the set A in the equilibrium allocation
x. That is, ( ∪

i∈A\{i∗}

S′
i

)
∪ R ∪ (S′

i∗ ∩ Si∗) ⊆
∪
i∈A

Si.

Further, by the definition of R, we have R ⊆ S′
i∗ , and thus,∑

j∈(S′
i∗\Si∗ )\R

pj < ∆ ·
∑

j∈(S′
i∗\Si∗ )\R

p′j ≤ ∆ · e′i∗ = (ci∗ − 1) · ei∗



Therefore,∑
j∈

∪
i∈A S′

i

pj =
∑

j∈(S′
i∗\Si∗ )\R

pj +
∑

j∈
(∪

i∈A\{i∗} S′
i

)
∪ R ∪ (S′

i∗∩Si∗ )

pj

< (ci∗ − 1) · ei∗ +
∑

j∈
(∪

i∈A Si

) pj
≤ (ci∗ − 1) · ei∗ +

∑
i∈A

ei (1)

On the other hand, we have∑
j∈

∪
i∈A S′

i

pj =
∑
i∈A

∑
j∈S′

i

pj

≥
∑
i∈A

ciei (Proposition 2)

≥ ci∗ei∗ +
∑

i∈A\{i∗}

∆ · ei (∀ i ∈ A \ {i∗}, ci ≥ ∆)

= ci∗ei∗ +
∑

i∈A\{i∗}

(ci∗ − 1) · ei∗
e′i∗

· ei

≥ ci∗ei∗ +
∑

i∈A\{i∗}

(ci∗ − 1) · ei (ei∗ ≥ e′i∗)

This contradicts formula (1), as ci∗ ≥ 2 and A \ {i∗} is nonempty. �

The proved ratio ζ linear < 2 is tight, as the following example shows.

Example 2. There are three items and two buyers with utilities and endowments:

u1 =
(

1+ε
2−2ε2−ε3 ,

1−ε−2ε2−ε3

2−2ε2−ε3 , 0
)
, u2 =

(
ε2, ε, 1 − ε − ε2

)
, e1 = ε + ε2, and e2 =

1 − ε − ε2. When both buyers bid truthfully, the equilibrium price is p = (ε +

ε2, ε(1−ε−ε2)
1−ε2 , (1−ε−ε2)2

1−ε2 ), and equilibrium allocations are x1 = (1, 0, 0) and x2 =

(0, 1, 1); the utility of the first buyer is u1 = 1+ε
2−2ε2−ε3 . When the first buyer

bids u′
1 = u2, the equilibrium price becomes p′ =

(
ε2, ε, 1 − ε − ε2

)
, and the

best equilibrium allocations are x′
1 = (1, 1, 0) and x′

2 = (0, 0, 1); the utility of

the first buyer becomes u′
1 = 1. Thus, the utility gain is

u′
1

u1
= 2−2ε2−ε3

1+ε , which
approaches to 2 when ε is arbitrarily small.

4 Cobb-Douglas Utility Functions

In a Cobb-Douglas market, buyers’ utility functions are of the form ui(xi) =∏
j∈[m] x

αij

ij , where
∑m

j=1 αij = 1, for all i ∈ [n]. To guarantee the existence of a
market equilibrium, we assume that each item is desired by at least one buyer,
i.e., αij > 0 for some i. This, together with the fact that each buyer desires at



least one item (followed by the fact that αij > 0 for some j), implies that a
market equilibrium always exists [15].

For a given Cobb-Douglas market with reported utilities (αij)j∈[m] and en-
dowment ei from each buyer i, market equilibrium prices and allocations are
unique and can be computed by the following equations [10].

pj =
n∑

i=1

eiαij (2)

xij =
eiαij∑n
i=1 eiαij

(3)

Based on these characterizations, in the following we will analyze the incen-
tive ratio of Cobb-Douglas markets.

4.1 Manipulation on Endowments

Note that the private information of a buyer is composed of two parts: money
endowment and utility function. In this section, we show that a buyer will never
misreport his endowment.

Lemma 2. In any Cobb-Douglas market, bidding endowments truthfully is a
dominant strategy for all buyers.

By the above result, in the following discussions, we assume that all buy-
ers report their endowments truthfully, and will only consider their strategic
behaviors on utility functions.

4.2 Reductions on Market Sizes

We first show that the incentive ratio of Cobb-Douglas markets is independent
of the number of buyers. Let

ζ(n) = max
{
ζMn | Mn is a Cobb-Douglas market with n buyers

}
be the largest incentive ratio of all markets with n buyers. Note that ζ(1) = 1.

Theorem 2. For Cobb-Douglas markets, incentive ratio is independent of the
number of buyers, i.e., ζ(n) = ζ(n′) for any n > n′ ≥ 2.

The claim follows from the following two lemmas.

Lemma 3. For any n-buyer market Mn, there is a 2-buyer market M2 such
that ζM2 ≥ ζMn . This implies that ζ(2) ≥ ζ(n).

Proof. Consider a market Mn with n buyers; assume without loss of generality
that the first buyer defines the maximal incentive ratio, i.e., ζMn = ζMn

1 . Given
Mn, we will construct a market M2 with two buyers as follows.



– Input of Mn: n buyers [n] = {1, . . . , n}, each with an endowment ei
and a utility function ui =

∏m
j=1 x

αij

ij .

– Construction of M2: 2 buyers 1∗, 2∗.
• For 1∗, endowment e1∗ = e1, utility function u1∗ =

∏m
j=1 x

α1∗j

1∗j ,

where α1∗j = α1j.

• For 2∗, endowment e2∗ = 1− e1, utility function u2∗ =
∏m

j=1 x
α2∗j

2∗j ,

where α2∗j =
∑n

i=2
ei

1−e1
αij.

For the constructed M2, we can easily verify it is a well defined Cobb-Douglas
market, i.e., e1∗ + e2∗ = 1,

∑
j α1∗j = 1 and

∑
j α2∗j =

∑
j

∑n
i=2

ei
1−e1

αij = 1.
The above reduction is based on unifying buyers 2, . . . , n in Mn into one buyer
2∗ in M2. We will prove that the incentive ratio of buyer 1∗ in M2 is the same
as buyer 1 in Mn, i.e., ζ

M2
1∗ = ζMn

1 . This immediately implies that ζM2 ≥ ζM2
1∗ =

ζMn
1 = ζMn , and thus, ζ(2) ≥ ζ(n).

Let p = (pj)j∈[m] and p∗ = (p∗j )j∈[m] be the equilibrium prices of marketsMn

and M2 respectively. Further, let x1 = (x1j)j∈[m] and x∗
1∗ = (x∗

1∗j)j∈[m] denote
the equilibrium allocations of buyer 1 in Mn and buyer 1∗ in M2, respectively.
Since for any j ∈ [m],

pj =

n∑
i=1

eiαij = e1∗α1∗j + (1− e1)

n∑
i=2

ei
1− e1

αij = e1∗α1∗j + e2∗α2∗j = p∗j ,

we obtain

x1j =
e1α1j∑n
i=1 eiαij

=
e1∗α1∗j

e1∗α1∗j + e2∗α2∗j
= x∗

1∗j .

Hence,

u1(x1) =
m∏
j=1

x
α1j

1j =
m∏
j=1

(x∗
1∗j)

α1∗j = u1∗(x
∗
1∗)

Denote by α′
1 = (α′

1j)j∈[m] the best response of buyer 1 in Mn. By the same
argument as above, buyer 1∗ can get the same utility in M2 as buyer 1 in Mn

by reporting α′
1 = (α′

1j)j∈[m]. That is, u′
1 = u′

1∗ . This implies that ζM2
1∗ = ζMn

1

and completes the proof of the claim. �

We can have a similar reduction from any 2-buyer market to an n-buyer
market.

Lemma 4. For any 2-buyer market M2, there is an n-buyer market Mn such
that ζMn ≥ ζM2 . This implies ζ(n) ≥ ζ(2).

4.3 Incentive Ratio

Theorem 3. The incentive ratio of Cobb-Douglas markets is

ζCobb-Douglas ≤ e1/e ≈ 1.445.



Proof. According to Theorem 2, it suffices to consider the case with 2 buyers. We
consider two scenarios: For the fixed bid vector (α2j)j∈[m] of buyer 2, buyer 1 bids
(α1j)j∈[m] and (α′

1j)j∈[m], respectively, with resulting equilibrium allocations
x1 = (x1j)j∈[m] and x′

1 = (x′
1j)j∈[m]. Then,

ζ =
u1(x

′
1)

u1(x1)
=

∏m
j=1 x

′
1j

α1j∏m
j=1 x

α1j

1j

=

∏m
j=1

( e1α
′
1j

e1α′
1j+e2α2j

)α1j∏m
j=1

( e1α1j

e1α1j+e2α2j

)α1j

=
m∏
j=1

(
α′
1j(e1α1j + e2α2j)

α1j(e1α′
1j + e2α2j)

)α1j

=
m∏
j=1

(
α′
1jα1j +

e2
e1
α2jα

′
1j

α′
1jα1j +

e2
e1
α2jα1j

)α1j

,
m∏
j=1

Rj

where Rj , j = 1, . . . ,m, is the j-th term of the above formula.
For each item j, it is easy to see that Rj > 1 if and only if α′

1j > α1j . Let

S = {j | Rj > 1}, and rj = R
1/α1j

j for j ∈ S (note that rj is well defined for
those items in S as α1j > 0). Therefore, rj > 1 if and only if Rj > 1. Further,
when rj > 1, one can see that α′

1j ≥ rjα1j . This implies that
∑

j∈S rjα1j ≤∑
j∈S α′

1j ≤ 1. Hence,

ζ ≤
∏
j∈S

r
α1j

j ≤
∏
j∈S

e
rjα1j

e ≤ e

∑
j∈S rjα1j

e ≤ e1/e.

Note that the above second inequality follows from the fact that for any x, y ≥ 0,
xy ≤ exy/e, which can be verified easily. Therefore, the theorem follows. �

The upper bound established in the above claim is tight, which can be seen
from the following example.

Example 3. There are 2 items and 2 buyers, with endowments e1 and e2, re-
spectively. Let n = e2

e1
, ϵ1 = 1

n , and ϵ2 = 1
n3 . The utilities vectors of the two

buyers are defined as u1 = ( 1e , 1 −
1
e ) and u2 = (1 − ϵ2, ϵ2). When buyer 1 bid-

s u′
1 = (1 − ϵ1, ϵ1) instead of u1, the incentive ratio is given by the following

formula:( 1− 1
n

e + n(1− 1
n3 )(1− 1

n )
1− 1

n

e + n(1− 1
n3 )

1
e

) 1
e

·
( 1

n (1−
1
e ) + n · 1

n3 · 1n
1
n (1−

1
e ) + n · 1

n3 · (1− 1
e )

)1− 1
e

When n goes to infinity, the limit of the left factor is e1/e, and the limit of the
right factor is 1. Therefore, the ratio approaches e1/e.

5 Conclusions

We study two important class of utility functions in Fisher markets: linear and
Cobb-Douglas utilities, and show that their incentive ratios are bounded by 2
and e1/e, respectively. It is interesting to explore the incentive ratios of other
CES functions. In particular, is the incentive ratio bounded by a constant for any



CES function? Another interesting direction is to characterize Nash equilibria
in the market mechanism. In the full version paper, we give a sufficient and nec-
essary condition for truthful bidding being a Nash equilibrium in Cobb-Douglas
markets. It is intriguing to have such characterizations for other CES functions.
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