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Motivating questions

Some intriguing questions related to the working of GPT-3: How does a large

model pretrained on a large corpus of unlabeled data learn, and why is it

adaptable to multiple downstream tasks?
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Motivating questions

Some intriguing questions related to the working of GPT-3: How does a large

model pretrained on a large corpus of unlabeled data learn, and why is it

adaptable to multiple downstream tasks?

• Related to research on the generalization of over-parameterized models

(2017): Modern deep networks (e.g., ResNet, BERT) have more

parameters than dataset labels to memorize training data [ZBH+21]
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Generalization of language models

Recently, there has been growing interest in the generalization capability of

LLMs (broadly defined)

2



Generalization of language models

Understanding what information is presented in a natural language and how we

may quantify content is certainly not a new research quest. . .

• The notion of entropy for measuring information in a language dates back

to very classical work [Sha48]

• Applying entropy to N-gram statistics gives a measure of information

(more recent instantiations include next-word prediction in GPT-3, and

next-sentence prediction in BERT)
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Generalization of learning with IID samples

Training: given n samples from D, (x1, y1), (x2, y2), . . . , (xn, yn),

L̂(fW ) =
1

n

n∑
i=1

ℓ(fW (xi ), yi )

Test: expected risk over a random sample of D

L(fW ) = E
(x,y)∼D

[ℓ(fW (x), y)]

Generalization analysis of ML algorithms: given a hypothesis space of neural

nets, how do we quantify generalization gap L(fW )− L̂(fW )?

• Rademacher complexity [BFT17]

• PAC-Bayes [AGN+18; JLZ22]: data-dependent bounds

• Neural tangent kernels [ADH+19]: high width, fixed random matrix

• Implicit regularization [LMZ18]: starting from a small, random

initialization, SGD searches inside a low-rank space

• Benign overfitting [BLL+20]

See a recent textbook by Tong Zhang [Zha23] (UIUC) for further references
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Uniform convergence bounds on Lipschitz-continuous neural networks

Neural network setup

• fW : A multi-layer neural net with weight matrices W = [W1,W2, . . . ,Wl ]

• D: An unknown distribution over feature space times label space X × Y

Norm bounds for neural nets

• Hypothesis space with bounded ℓ2 and Frobenius norms:

H =
{
∥W1∥2 ≤ s1, ∥W2∥2 ≤ s2, . . . , ∥Wl∥2 ≤ sl ;

∥W1∥F ≤ s1r1, ∥W2∥F ≤ s2r2, . . . , ∥Wl∥F ≤ sl rl
}

(1)

• For any l-layer deep net fW whose weight matrices W belong to H, with

Lipschitz-continuous activation functions at every layer, the following

holds w.h.p.

L(fW )− L̂(fW ) ≲

√√√√(∏l
i=1 s

2
i

)∑l
i=1 r

2
i

n

• The bound grows exponentially with depth, and is tight in the

worst-case 4
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Today’s talk

Central thesis: Measure generalization through the Hessian of loss surfaces

Derivation of a Hessian trace measure on the generalization gap

Main ideas

Hessian-based regularization for neural net training

Generalization in graph neural networks

Setup and results

Numerical results
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Problem setup

An l-layer feedforward neural network with weight matrices W1,W2, . . . ,Wl :

fW (x) = σl

(
. . . σ3

(
W3σ2

(
W2σ1(W1x)

)))

• Supervised learning: Train weights from random initialization

• Transfer learning: Adapt weights from pretrained foundations models

(e.g., fine-tuning)
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Distance from initialization affects generalization

The distance between the initialization and the model can affect generalization:

This corresponds to the spectral radius of the hypothesis space [NK19]
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Figure 1: Results from Li and Zhang

[LZ21], by fine-tuning ResNet-18 on

seven image classification tasks

Figure 2: Similar results have appeared in

prior work on transfer learning in deep

neural networks (folklore)
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Our approach based on PAC-Bayes bounds

PAC-Bayes bounds

• P = N (W (0), σ2 Id): prior distribution centered at initialization weights

• Q = N (W (T ), σ2 Id): posterior distribution centered at trained weights

• With probability at least 1− δ for any δ ∈ (0, 1) (see, e.g., McAllester

[McA13])

E
W∼Q

[L(fW )] ≤ E
W∼Q

[
L̂(fW )

]
+

√
KL(Q||P) + log(4nδ−1)

n
(2)

We will use a generalized result, which subsumes the above result by setting

β appropriately. For any β ∈ (0, 1), with probability at least 1− δ [Cat07]

E
W∼Q

[L(fW )] ≤ 1

β
E

W∼Q

[
L̂(fW )

]
+

KL(Q||P) + log(δ−1)

2β(1− β)n
(3)
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Our finding: the Hessian of loss surface can also affect generalization

Claim 1: Use Taylor’s expansion on the perturbed loss

Measure model stability after adding perturbations to weight parameters. Let

ℓQ(fW ) = EW∼Q [ℓ(fW )] = EU∼N (0,σ2 Id) [ℓ(fW+U)]. We have∣∣∣∣ℓQ(fW (x), y)− ℓ(fW (x), y)− 1

2
σ2 Tr

[
∇2[ℓ(fW (x), y)]

]∣∣∣∣ ≤ C1σ
3 (4)
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Figure 3: Illustration of the Hessian approximation in equation (4). We report the

results at the last epoch. σ: standard deviation of Gaussian noise injected into weight

matrices.
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Our finding: the Hessian of loss surface can also affect generalization

Claim 1: Use Taylor’s expansion on the perturbed loss

Measure model stability after adding perturbations to weight parameters. Let

ℓQ(fW ) = EW∼Q [ℓ(fW )] = EU∼N (0,σ2 Id) [ℓ(fW+U)]. We have∣∣∣∣ℓQ(fW (x), y)− ℓ(fW (x), y)− 1

2
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∇2[ℓ(fW (x), y)]
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Claim 2: Uniform convergence of the Hessian operator

Because the Hessian operator is Lipschitz-continuous, the trace of the Hessian

satisfies the uniform convergence within the hypothesis space H
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A sketch for deriving the Hessian trace measure

From equation (3),

LQ(W ) ≤ 1

β
L̂Q(W ) +

C(KL(Q||P) + log(δ−1))

2β(1− β)n
(5)

By Claim 1 (applied to both the expected loss LQ and the empirical loss L̂Q),

LQ(W ) = L(W ) +
σ2

2
E

(x,y)∼D

[
Tr

[
∇2ℓ(fW (x), y)

]]
+ O(σ3) (6)

L̂Q(W ) = L̂(W ) +
σ2

2n

n∑
i=1

Tr
[
∇2ℓ(fW (xi ), yi )

]
+ O(σ3) (7)

By Claim 2, the difference between the second terms of equations (6), (7) is of

order O(n− 1
2 )

By choosing σ2 and β carefully, we get [ZLJ24]

L(W ) ≤ (1 + ϵ)L̂(W ) + (1 + ϵ)

√
Cαr 2

n
+ O

(
n− 3

4 log(δ−1)
)
, (8)

where α is the trace norm of the hypothesis space, and r is the radius of the

hypothesis space
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Numerical results

The Hessian trace measure correlates well with empirical measurements of the

generalization gap. Compare across seven fine-tuning methods: SGD, early

stopping, weight decay, label smoothing, mixup, distance-based regularization,

sharpness-aware minimization
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Figure 3: The Hessian measures accurately correlate with empirical generalization

errors for seven fine-tuning methods
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Numerical results

A very related study pursuing a compression-based approach [LFK+22]
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Noise injection induces a regularization of the Hessian

An algorithmic implication: Instead of minimizing the loss ℓ, we could

minimize ℓQ = EU∼N (0,σ2 Id) [ℓ(fW+U)] instead. By equation (4), this regularizes

trace of the Hessian of the loss surface

Experimental results: Comparison between SGD, noise injection (directly add

noise before computing gradient, i.e., WP-SGD), and a two-point noise

injection algorithm (NSO)

12



Noise injection induces a regularization of the Hessian

An algorithmic implication: Instead of minimizing the loss ℓ, we could

minimize ℓQ = EU∼N (0,σ2 Id) [ℓ(fW+U)] instead. By equation (4), this regularizes

trace of the Hessian of the loss surface

Experimental results: Comparison between SGD, noise injection (directly add

noise before computing gradient, i.e., WP-SGD), and a two-point noise

injection algorithm (NSO)

0 10 20 30
t

0.5

0.6

0.7

0.8

T
es

t
L

os
s

ResNet 34

SGD

WP-SGD

NSO

0 10 20 30
t

0.5

1.0

1.5

2.0

T
ra

ce

×104 ResNet 34

0 10 20 30
t

0.0

0.2

0.4

0.6

G
en

er
al

iz
at

io
n

G
ap

ResNet 34

0 2 4 6
t

0.8

1.0

1.2

1.4

T
es

t
L

os
s

BERT Base

SGD

WP-SGD

NSO

0 2 4 6
t

0.1

0.4

0.7

1.0

T
ra

ce

×104 BERT Base

0 2 4 6
t

0.0

0.3

0.6

0.9

G
en

er
al

iz
at

io
n

G
ap

BERT Base

Figure 3: Fine-tuning ResNet-34 and BERT-Base, respectively, on an image and a

text classification dataset. Similar results for more recent architectures (multi-modal,

CLIP), chain-of-thought fine-tuning (LM, transformer) [ZLJ24] 12
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Message-passing neural networks

Graph neural networks are neural networks designed for working with graphs

• Graph G = (V ,E): V is a set of vertices and E is a set of edges

• Every node has a feature vector xv for all v ∈ V : let X be a feature matrix

• Graph-level prediction: a prediction label y ∈ Y for each graph instance G

Message passing neural networks (MPNNs) with a pre-defined graph diffusion

matrix/mechanism PG (on each graph G)

• Let H(0) = X

• For the first l − 1 layers, recursively compute node embedding

H(t) = ϕt

(
XU(t) + ρt

(
PGψt(H

(t−1))
)
W (t)

)
, for t = 1, 2, . . . , l (9)

• For the last layer l , aggregate the embedding of all nodes

H(l) =
1

n
1⊤
n H

(l−1)W (l). (10)
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Generalization bounds for MPNNs

How does the generalization bound of GNNs scale with graph structures?

Known results apply to the following GNN architectures

• Graph convolutional networks (GCN) [KW17]

• GraphSAGE (SAmple and aggreGatE) [HYL17]

• Graph isomorphism networks (GIN) [XHL+19]

Table 1: Illustration of the dependence on graph structure of existing results. d : max

degree, l : number of GNN layers (depth), A: adjacency matrix, D: degree-diagonal

matrix of A

GCN MPNN GIN GraphSAGE

Garg et al. [GJJ20] d l−1 d l−1 - -

Liao et al. [LUZ21] d
l−1
2 d l−1 - -

Ours [JLS+23] 1 ∥A∥l−1
2

∑l−1
i=1

∥A∥i2
l−1

∥∥D−1A
∥∥l−1

2

The dependence on graph structure, scaled with maximum degree d , or the

spectral norm of PG , which is provably ≤ d
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Figure 4: Illustration of graph statistics: Comparison on five social networks from

SNAP, measured based on the GCN architecture 15



Example on a one-layer linear GNN

One-layer linear GNN with average pooling of node embeddings (n = |V |)

f (X ,G) =
1

n
1⊤
n PGXW

(1)

Thus, the Euclidean norm of f (X ,G) is less than

∥f (X ,G)∥ =

∥∥∥∥1n1⊤
n PGXW

(1)

∥∥∥∥
≤
∥∥∥∥1n1⊤

n

∥∥∥∥
2

· ∥PG ∥2 · ∥X∥2 ·
∥∥∥W (1)

∥∥∥ := C

Provided that the loss function ℓ(·, y) is Lipschitz-continuous, given N samples,

we know from standard results that (see, e.g., Zhang [Zha23])

L(f )− L̂(f ) ≲

√
C

N
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Generalizing the simple example to MPNNs

Generalization bounds for MPNNs (informal) [JLS+23]

Suppose activations and loss function are all twice-differentiable,

Lipschitz-continuous, first-order and second-order derivatives are both

Lipschitz-continuous. di : number of neurons at layer i , for i = 1, 2, . . . , l

With probability at least 1− δ over N samples, for any δ > 0, and any ϵ > 0,

any GNN f with weights in H (recall equation (1)) satisfies:

L(f ) ≤ (1 + ϵ)L̂(f ) +
l∑

i=1

√√√√√di
(

max
(X ,G ,y)∼D

∥X∥22 ∥PG∥2(l−1)
2

)(
r 2i

l∏
j=1

s2j

)
N

(11)

Example: for GCN, PG = D−1/2AD−1/2, hence ∥PG ∥2 ≤ 1

Open problem: remove the dependence on di to get size-independent sample

complexity for GNNs? Known for feedforward NN [GRS18]
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Numerical results
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Figure 5: Comparing our result and prior results Garg et al. [GJJ20] and Liao et al.

[LUZ21] on three graph classification tasks conducted on GCNs and MPNNs
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Conclusion

The use of Hessian to study neural networks seems to have been abandoned by

the community due to their high computational costs

In this work, we propose to use Hessian of the loss surface as a measure of the

generalization gap of neural networks and language models

Some partial progress

• Can explain a variety of phenomena observed with neural network training

• Provides a new approach to prove generalization bounds for GNNs

Next steps

• Better understand the structure of Hessian of loss surfaces in large models

• Known sample complexity for GNN only works for graph-level prediction;

what about the sample complexity for learning node-level prediction tasks

Thank you for listening!
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