
Computing the Nucleolus of Matching, Cover and Clique Games

Ning Chen
Division of Mathematical Sciences
Nanyang Technological University

Singapore

Pinyan Lu
Microsoft Research Asia

Beijing, China

Hongyang Zhang
Department of Computer Science

Shanghai Jiao Tong University
Shanghai, China

Abstract

In cooperative games, a key question is to find a divi-
sion of payoffs to coalition members in a fair manner.
Nucleolus is one of such solution concepts that pro-
vides a stable solution for the grand coalition. We study
the computation of the nucleolus of a number of co-
operative games, including fractional matching games
and fractional edge cover games on general weighted
graphs, as well as vertex cover games and clique games
on weighted bipartite graphs. Our results are on the pos-
itive side—we give efficient algorithms to compute the
nucleolus, as well as the least core, of all of these games.

Introduction
A central question in cooperative game theory is how to dis-
tribute a certain amount of profit generated by a group of
agents N , denoted by a function f(N), to each individual.
A number of solution concepts have been proposed to cap-
ture fairness of the distribution (a.k.a. imputation) among
the agents. One of the most important notions is that of core,
which requires that no group of agents can benefit by break-
ing away from the grand coalition. That is, for any S ⊆ N ,∑

i∈S xi ≥ f(S), where xi is the share that agent i obtains.
In many games, however, the core may be empty. Further,

even if the core is nonempty, it may not be a singleton; thus,
it is still unclear how the benefit of cooperation should be
shared. The notion of nucleolus was introduced in (Schmei-
dler 1969) as a single point solution for cooperative games.
Roughly speaking, it is the unique distribution that lexico-
graphically maximizes the vector of non-decreasingly or-
dered excesses, defined as

∑
i∈S xi − f(S), over the set of

imputations. It is well known that if the core is nonempty, it
always contains the nucleolus. Nucleolus provides a grand
coalition solution of a game, and has been applied in, e.g.,
insurance and bankruptcy policies (Lemaire 1984; Aumann
and Maschler 1985).

Due to its vast applications, nucleolus has received much
attention in the past a few decades. Following the definition,
(Kopelowitz 1967), as well as (Maschler, Peleg, and Shapley
1979), proposed an approach based on solving a sequence
of linear programs to find the nucleolus. While there are at
mostN such linear programs to solve, constructing one may

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

take exponential steps due to the number of constraints cor-
responding to all possible coalitions. Therefore, it is in gen-
eral far from clear how to apply this method, and compu-
tational complexity has been taken into account for finding
the nucleolus for various cooperative games; see, e.g., (Deng
and Papadimitriou 1994).

The first efficient (i.e., polynomial time) algorithm com-
puting the nucleolus was proposed in (Megiddo 1978)
for minimum spanning tree games when the underlying
graph is a tree. Later on, a number of efficient algorithms
were developed for, e.g., matching games (Solymosi and
Raghavan 1994; Kern and Paulusma 2003; Biro, Kern,
and Paulusma 2012), standard tree games (Granot et al.
1996), flow games (Deng, Fang, and Sun 2009), voting
games (Elkind and Pasechnik 2009), bankruptcy games (Au-
mann and Maschler 1985), airport profit games (Branzei
et al. 2006), and spanning connectivity games (Aziz et al.
2009). On the other hand, NP-hardness results for com-
puting the nucleolus were shown for, e.g., minimum span-
ning tree games (Faigle, Kern, and Kuipers 1998), thresh-
old games (Elkind et al. 2007), flow and linear production
games (Deng, Fang, and Sun 2009).

We follow the stream and study computing the nucleo-
lus of some combinatorial games. We first study fractional
matching games, where given a general weighted graph with
weights on edges, agents correspond to vertices and the val-
uation of a coalition S is the value of a maximum weighted
fractional matching on S. Fractional matching games gen-
eralize the classic assignment games (Shapley and Shubik
1971) and takes into account the fact that agents usually
split their collaborations fractionally with each other. For in-
stance, in our daily life, one usually splits his or her avail-
able time to several tasks that involve other agents; fractional
matching games consider how to allocate the time from
a game theoretical viewpoint. Fractional matchings games
are a special case of the more general linear production
games (Owen 1975) for which the core is always nonempty.
We show that the nucleolus, as well as the least core, can be
computed in polynomial time for fractional matching games.

Note that for bipartite graphs, as an optimal fractional
solution is integral, our result immediately implies an effi-
cient algorithm computing the nucleolus for bipartite inte-
gral matching games. Such a result for bipartite graphs was
shown previously by (Solymosi and Raghavan 1994); but
our algorithm is much simpler and applies to a more general
setting. (Kern and Paulusma 2003) studied matching games

Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence

1319

for general graphs as well, but they considered unweighted
graphs and integral matchings, which are different from
ours. In a recent work, (Biro, Kern, and Paulusma 2012)
gave an O(n4) algorithm that computes the nucleolus of
integral matching games on general weighted graphs given
that the core is nonempty. Note that for general weighted
graphs, computing the nucleolus of integral matching games
has been a long standing open problem.

We next consider vertex cover games, introduced in
(Deng, Ibaraki, and Nagamochi 1999), where we are given a
graph with weights on vertices and agents corresponding to
edges. The valuation of a coalition S is the value of a min-
imum vertex cover for S. (For such games, valuations are
interpreted as costs and agents would like to minimize their
assigned share.) Vertex cover games may find applications
in, e.g., deciding the locations of facilities. We show that for
bipartite graphs, the least core and the nucleolus of vertex
cover games can be computed in polynomial time.

Both of our algorithms, at a high level view, are based on
the linear programming approach of computing nucleolus
and careful exploitations into the combinatorial structures
of the problems.

Preliminaries
A cooperative game is defined by a set of agents N and a
characteristic function f : 2N → R, associating a value
f(S) to every subset S ⊆ N , where f(∅) = 0. A central
notion in cooperative games is that of core, defined as below:

core(N, v) =
{
x ∈ RN | x(N) = f(N),

x(S) ≥ f(S), ∀ S ⊆ N
}

where x(S) =
∑

i∈S xi is the allocation of coalition S. The
intuition of the definition is that all agents in N share the
total valuation f(N) while no subset of agents are willing to
deviate. Throughout the paper, we will use N to denote the
set of agents and i to denote an agent.

The excess of a coalition S ⊆ N with respect to an allo-
cation x ∈ RN is defined as

e(S, x) , x(S)− f(S).

The excess vector θ(x) is defined as the 2N − 2 dimensional
vector whose components are the excesses for the coalitions
S ⊆ N , S 6= ∅, N , and are arranged in a non-decreasing
order. The nucleolus is then the allocation that lexicographi-
cally maximizes the excess vector θ(x). Note that the nucle-
olus is unique (Schmeidler 1969).

The nucleolus can be computed by the following standard
sequence of linear programs (Kopelowitz 1967; Maschler,
Peleg, and Shapley 1979).

(P1) max ε

s.t. x(S) ≥ f(S) + ε, ∀ S ⊆ N,S 6= ∅, N
x(N) = f(N)

Let ε1 be the optimum value of P1. Let P1(ε) denote the set
of all x ∈ RN such that x and ε satisfy the constraints of
P1.1 Hence, core(N, v) = P1(0), i.e., the core is nonempty

1In general, P (ε) denotes the set of feasible solutions for the
given linear program P and target value ε.

if and only if ε1 ≥ 0. The least core is defined to be the set
P1(ε1), i.e., those give the optimum value for P1.

For a given polytope Z ⊆ RN , let

fix(Z) ,
{
S ⊆ N | x(S) = y(S), ∀ x, y ∈ Z

}
denote the set of coalitions fixed by Z. Verifying if a coali-
tion S is fixed in a bounded polytope corresponding to a
linear program P can be determined by the following two
linear programs.

max x(S) (Pmax)

s.t. constraints of P
min x(S) (Pmin)

s.t. constraints of P

Note that both programs have nonempty optimal solutions
since the polytope defined by P is bounded and nonempty.
A coalition S is fixed if and only if the optimum values of
Pmax and Pmin coincide.

In general, given Pk−1 and fix(Pk−1(εk−1)), we solve
the following program.

(Pk) max ε

s.t. x(S) ≥ f(S) + ε, ∀ S /∈ fix(Pk−1(εk−1))

x ∈ Pk−1(εk−1)

Denote by εk the optimum value of Pk. The process con-
tinues iteratively until a unique solution has been identified,
which corresponds to the nucleolus of the game. In addition,
in the iterative process, it is easy to see that εk ≥ εk−1 and
Pk(εk) ⊆ Pk−1(εk−1), for any k > 1.

Note that the nucleolus is an allocation and has |N | vari-
ables; further, every iteration decreases the dimension of the
feasible region by at least 1. Hence, in total there are at most
|N | linear programs to compute. However, in each itera-
tion k we need to determine the inequality constraints corre-
sponding to the coalitions that are not in fix(Pk−1(εk−1)),
which may be intractable in polynomial time. Therefore, our
interest is to design efficient algorithms to find the nucleolus.

Fractional Matching Games
In this section we consider fractional matching games:
Given a graph G = (V,E), where the vertex set V corre-
sponds to the set of agents N , i.e., N = V , there is a non-
negative weight we for every e ∈ E. We use V (·) and E(·)
to denote the set of agents/vertices and edges, respectively,
restricted on the given domain. For any coalition S ⊆ N , its
value f(S) is the value of a maximum weighted fractional
matching in the subgraph induced by S, i.e.,

f(S) , max
∑

e∈E(S)

we · ye

s.t.
∑

e∈E(S): i∈e

ye ≤ 1, ∀ i ∈ V (S)

ye ≥ 0, ∀ e ∈ E(S)

For example, consider a triangle (V,E), where V =
{1, 2, 3}, E = {(1, 2), (1, 3), (2, 3)}, and w(1, 2) = 3,
w(2, 3) = 2, and w(1, 3) = 2. If each player uses half of his
effort to cooperate with each of his neighbors, the outcome

1320

is 3.5, equal to the value of the maximum factional matching
of the graph. The allocation (1.5, 1.5, 0.5) is in core(N, v).
Note that if only integral matching is allowed, the problem
is a classic matching game and the core may be empty.

By the formulation of the f(S) defined above, it is easy to
see that fractional matching game is a subclass of the more
general linear production game (where the value of a coali-
tion is obtained by solving a linear programming), for which
the core is guaranteed to be nonempty (Owen 1975). This
implies the following claim immediately.

Theorem 1. The core of fractional matching games is
nonempty.

Note that for general linear production games, computing
the nucleolus is NP-hard, even for special cases like flow
games (Deng, Fang, and Sun 2009). For fractional matching
games, however, we will show that computing the nucleolus
can be solved in polynomial time.

We first need the following characterization for an optimal
maximum fractional matching solution (details can be found
in, e.g., (Schrijver 2003)).

Theorem 2. For any given weighted graph G, there exists a
maximum fractional matching y satisfying the following.

• Let E′ = {e ∈ E : ye > 0}. Let G′ be the induced sub-
graph of G from edge set E′. Then the connected compo-
nents of G′ are either odd cycles or single edges.
• For any edge e ∈ E′, if e is a single edge, ye = 1; if e is

in an odd cycle, ye = 1
2 .

Computing the Least Core
As discussed above, the least core is captured by linear pro-
gram P1, which contains an exponential number of con-
straints. Here, we consider the following program (where for
any edge e = (i, j), we write x(e) = xi + xj):

(P+
1) max ε

s.t. x(e) ≥ we + ε, ∀ e ∈ E
xi ≥ ε,∀ i ∈ N
x(N) = f(N)

Let the optimal solutions of P+
1 be ε+1 . We have the follow-

ing claim (recall that ε1 is the optimum value of P1).

Lemma 1. ε1 = ε+1 and the least core P1(ε1) = P+
1 (ε+1).

Thus, the least core can be computed in polynomial time.

Proof. Note that any feasible solution of P1 is also a feasible
solution of P+

1 ; therefore, ε+1 ≥ ε1. By Theorem 1, ε1 ≥
0; hence, ε+1 is non-negative. Next we will prove that for
any coalition S, the excess given by any x ∈ P+

1 (ε+1) is at
least ε+1 , i.e., x(S)− f(S) ≥ ε+1 . This immediately implies
that ε+1 ≤ ε1, since ε1 is the maximum possible least excess
among all allocations.

For any S ⊆ N , by Theorem 2, there is a maximum frac-
tional matching on S that can be decomposed to odd cycles
and single edges; let T1 be the collection of odd cycles, T2

be the set of single edges, and T3 be the set of isolated (i.e.,
unmatched) vertices. Hence, we have

x(S)− f(S)

=
∑
C∈T1

(
x(V (C))− f(V (C))

)
+
∑
e∈T2

(x(e)− we) +
∑
i∈T3

xi

=
∑
C∈T1

∑
e∈E(C)

(x(e)− we)

2
+
∑
e∈T2

(x(e)− we) +
∑
i∈T3

xi

For any e ∈ E or i ∈ N , we have x(e)−we ≥ ε+1 and xi ≥
ε+1 by P+

1 . Thus, the value of the formula above is at least
ε+1 , if T2 or T3 is nonempty, or is at least 3ε+1 /2 ≥ ε+1 , if T1

is nonempty (as any odd cycle contains at least three edges).
This implies that x(S)− f(S) ≥ ε+1 , and thus, ε+1 = ε1.

By the definition of P1(ε1) and the above arguments, it is
easy to see that P1(ε1) = P+

1 (ε+1).

Having determined the least core, we further identify the
set of fixed constraints in P+

1 (ε+1) = P1(ε1), which will be
used in the subsequent sections. Let

E1 ,
{
e ∈ E | e ∈ fix(P+

1 (ε1))
}

N1 ,
{
i ∈ N | i ∈ fix(P+

1 (ε1))
}

Since checking if a coalition S is fixed by P+
1 is in poly-

nomial and we have polynomial number of candidates to
check, identifying E1 and N1 takes polynomial time.

Maximizing the Next Minimum Excess
Given the least core P1(ε1), to maximize the minimum ex-
cess of those coalitions that are not fixed, we next solve
P2, which, again, may have an exponential number of con-
straints. To get around this issue, it may be attempting to use
the same idea as P+

1 , defined as below.
(P2) max ε

s.t. x(e) ≥ we + ε,∀ e ∈ E \ E1

x(e) = we + αe, ∀ e ∈ E1

xi ≥ ε, ∀ i ∈ N \N1

xi = αi, ∀ i ∈ N1

x(N) = f(N)

where we + αe and αi are the fixed values for E1 and N1,
respectively, given by fix(P1(ε1)). Note that P2 was used
in (Kern and Paulusma 2003) to compute the nucleolus of
unweighted integral matching games with a nonempty core.

However, the following example shows that P2 fails to
give the same solution as P2 in our matching game. LetN =
{A,B,C,D}, and consider the following graph.

Figure 1: Graph G = (V,E) with edge weights.

It can be computed that f(N) = 4, ε1 = 0, E1 =
{AB,BC,CD,DA} with fixed value 2, andN1 = ∅. Com-
puting P2 gives the optimum value ε = 1

3 with xA =

1321

xC = 5
3 and xB = xD = 1

3 . However, consider coalition
S = {A,B,C}, S /∈ fix(P1(ε1)) and e(S, x) = 11

3 −
7
2 =

1
6 < ε. This implies that P2 fails to characterize P2(ε2). In
the following we will show how to fix this problem.

Let G1 be the induced subgraph with agent set N \ N1

and edge set E1. Let C be the collection of connected com-
ponents of G1. For each component C ∈ C and two vertices
i, j ∈ V (C) with (i, j) ∈ E \ E1, pick one shortest path in
C between i and j with respect to weight x(e) − we (note
that every edge in C has its x(e) value fixed); denote the re-
sulting set of shortest paths by L1 for all possible pairs from
every component in C.

Next we maximize the minimum excess for the coalitions
that are not fixed by P+

1 . In the following program P+
2 , on

the top of P2, we add a new class of constraints for the coali-
tions corresponding to paths in L1.

(P+
2) max ε

s.t. x(e) ≥ we + ε,∀ e ∈ E \ E1

x(e) = we + αe, ∀ e ∈ E1

xi ≥ ε, ∀ i ∈ N \N1

xi = αi, ∀ i ∈ N1

x(V (P)) ≥ f(V (P)) + ε, ∀ P ∈ L1

x(N) = f(N)

Lemma 2. ε2 = ε+2 and P2(ε2) = P+
2 (ε+2), where ε2 and

ε+2 are the optimum value of P2 and P+
2 , respectively.

Proof. For any path P ∈ L1, note that while all edges in
P ⊆ E(G1) are fixed, the edge between the two endpoints
of P is not. Thus, x(V (P)) is not fixed. Hence, any feasible
solution of P2 is also feasible for P+

2 ; therefore, ε+2 ≥ ε2.
For the other direction, it suffices to show that for any

x ∈ P+
2 (ε+2), (x, ε+2) is also feasible for P2. First, by

the construction of P+
2 , we know that x ∈ P+

1 (ε+1). By
Lemma 1, P+

1 (ε+1) = P1(ε1); therefore, x ∈ P1(ε1). Next
we show that for any S ⊆ N , if S /∈ fix(P1(ε1)), then
x(S) − f(S) ≥ ε+2 . By Theorem 2, there is a maximum
fractional matching of S that can be decomposed to single
edges and odd cycles, and the edges on odd cycles have op-
timal fractional solution 0.5; denote the set of odd cycles by
T1, single edges by T2, and isolated vertices by T3. Then,
similar to the proof of Lemma 1, we have

x(S)− f(S)

=
∑
C∈T1

∑
e∈E(C)

x(e)− we

2
+
∑
e∈T2

(x(e)− we) +
∑
i∈T3

xi

Note that x(e)− we ≥ 0 for any e ∈ E, and xi ≥ 0 for any
i ∈ N . If any e ∈ T2 is also in E \E1, then x(e)−we ≥ ε+2 .
If any i ∈ T3 is in N \ N1, then we also have xi ≥ ε+2 .
Otherwise, we next analyze odd cycles in T1. For any C ∈
T1, there are the following cases.

• If there exist at least two edges e1, e2 ∈ E(C) such that
both e1, e2 ∈ E \ E1, then x(V (C))− f(V (C)) ≥ ε+2 .

• If there exists exactly one edge ē = (i, j) ∈ E(C) such
that ē ∈ E \E1, then consider path E(C)\{ē}. Note that
all edges in E(C) \ {ē} are fixed and all vertices on it are
not fixed (otherwise, ēwould be fixed as well); thus, it still
exists in the graph G1 connecting i and j. Let Pē ∈ L1 be
the shortest path between i and j in G1. Then,

x(V (C))− f(V (C)) =
∑

e∈E(C)

x(e)− we

2

=
xē − wē

2
+

∑
e∈E(C)\{ē}

x(e)− we

2

≥ xē − wē

2
+
∑
e∈Pē

x(e)− we

2

= x(V (Pē))−
∑

e∈Pē∪{ē}

we

2

≥ x(V (Pē))− f(V (Pē)) ≥ ε+2

where the last inequality follows from P+
2 .

• If there is no edge in E(C) which is also in E \ E1, then
x(V (C))− f(V (C)) is fixed.

Hence, either x(S) − f(S) ≥ ε+2 , or x(V (C)) − f(V (C))
is fixed for all C ∈ T1. The latter implies that value x(S)−
f(S) is fixed, and thus, x(S) is fixed in P1(ε1). Therefore,
(x, ε+2) is a feasible solution of P2 and ε+2 = ε2.

To see that P2(ε2) = P+
2 (ε+2), first P2(ε2) ⊆ P+

2 (ε+2),
since P+

2 is a relaxation of P2. Second, for any x ∈ P+
2 (ε+2),

we have x ∈ P+
1 (ε+1) = P1(ε1). Further, by the above argu-

ments, x(S) ≥ f(S) + ε2, for any S /∈ fix(P1(ε1)). There-
fore, x ∈ P2(ε2). This implies that P+

2 (ε+2) = P2(ε2).

After solving P+
2 , again we identify the set of edges E2

and agents N2 (defined similar to E1 and N1) that are fixed
in P+

2 (ε+2).

Computing the Nucleolus
Recall that the nucleolus can be computed iteratively from
a series of linear programs P1, P2, . . ., until a unique solu-
tion has been identified. We have already discussed the cases
when k = 1 and 2. In general, for k > 2, similar to the defi-
nition ofG1 andL1, defineGk−1 to be the subgraph induced
by verticesN\Nk−1 and edgesEk−1, andLk−1 to be the set
of shortest paths inGk−1 connecting pairs (i, j) ∈ E\Ek−1

with respect to weight x(e) − we, where Ek−1 and Nk−1

represent the set of edges and vertices in fix(Pk−1(εk−1)).
(Note that if multiple shortest paths exist for a given pair,
only one is selected.)

Similar to P+
2 , consider the following program:

(P+
k) max ε

s.t. x(e) ≥ we + ε,∀ e ∈ E \ Ek−1

x(e) = we + αe, ∀ e ∈ Ek−1

xi ≥ ε, ∀ i ∈ N \Nk−1

xi = αi, ∀ i ∈ Nk−1

x(V (P)) ≥ f(V (P)) + ε, ∀ P ∈ Lk−1

x(N) = f(N)

1322

where we + αe and αi are the fixed values for Ek−1 and
Nk−1, respectively, given by fix(Pk−1(εk−1)).

Lemma 3. εk = ε+k and Pk(εk) = P+
k (ε+k), where εk and

ε+k are the optimum values of Pk and P+
k , respectively.

Proof. We prove the lemma by induction. The base case k =
2 has been proved in Lemma 2. For any k > 2, assume that
εk−1 = ε+k−1 and Pk−1(εk−1) = P+

k−1(ε+k−1); we will next
prove the claim for the value k.

We first show that P+
k is a relaxation of Pk, that is, any

feasible solution (x, ε) for Pk is also feasible for P+
k . For

the inequality constraints, since for any S ∈ (E \ Ek−1) ∪
(N \ Nk−1) ∪ Lk−1, x(S) is not fixed by Pk−1. Therefore
S /∈ fix(Pk−1(εk−1)). Thus, (x, ε) satisfies the inequality
constraints of P+

k . For the equality constraints, they are re-
laxations from x ∈ Pk−1(εk−1). By induction hypothesis,
P+
k−1(ε+k−1) = Pk−1(εk−1). Note that Ek−1 ∪ Nk−1 ⊆
fix(P+

k−1(ε+k−1)). Therefore, (x, ε) satisfies the equality
constraints of P+

k . Hence, P+
k is a relaxation of Pk; this im-

plies that εk ≤ ε+k .
Next we prove the other direction. First, similar to

the proof of Lemma 2, for any S ⊆ N with S /∈
fix(P+

k−1(ε+k−1)), we can show that x(S)−f(S) ≥ ε+k (de-
tails omitted). Second, for any x ∈ P+

k (ε+k), we will show
that x ∈ P+

k−1(ε+k−1). Note that in P+
k , the constraints on

edges and agents are explicitly included based on the opti-
mal solution ε+k−1 of P+

k−1. It suffices to consider the path
constraints, say, any P ∈ Lk−2.

• If V (P) /∈ fix(Pk−1(εk−1)), then

x(V (P))− f(V (P)) ≥ ε+k ≥ εk ≥ εk−1.

• If V (P) ∈ fix(Pk−1(εk−1)), let e denote the edge be-
tween the start and end vertices of path P ; then P ∪ {e}
forms a cycle and P ∪ {e} ⊆ Ek−1. Since x(V (P))
can be decomposed to allocations on edges and P+

k has
kept the values of all fixed edges from fix(Pk−1(εk−1)),
we know that x(V (P)) equals the fixed value of V (P)
in fix(Pk−1(εk−1)), which is at least f(V (P)) + εk−1.
Hence, we have x(V (P)) ≥ f(V (P)) + εk−1.

Therefore x solves P+
k−1 for the optimum value ε+k−1.

Hence, x ∈ P+
k−1(ε+k−1).

Now we are ready to prove the claim for the value k.
For any x ∈ P+

k (ε+k), since x is also in P+
k−1(ε+k−1) and

Pk−1(εk−1) = P+
k−1(ε+k−1) (by induction hypothesis), we

have x ∈ Pk−1(εk−1). Further, for any S ⊆ N where
S /∈ fix(P+

k−1(ε+k−1)), x(S) − f(S) ≥ ε+k ; thus, (x, ε+k)

solves Pk as well. Therefore, ε+k ≤ εk; this together with
ε+k ≥ εk implies that εk = ε+k .

Similar to the proof of Lemma 2, the proof for P+
k (ε+k) =

Pk(εk) follows from repeating the above argument. This
completes the proof.

Note that P+
k consists of polynomial number of con-

straints and can be constructed easily. Further, there are at
most |N | iterations. We obtain the following result.

Theorem 3. The nucleolus of a fractional matching game
on weighted graphs can be computed in polynomial time.

Vertex Cover Games
Given a graph G = (V,E), for every vertex v ∈ V there
is a non-negative weight wv . In a vertex cover game, agents
N = E correspond to edges. The function f : 2N → R
gives the cost for each coalition: For any S ⊆ N , f(S) is de-
fined as the value of a minimum vertex cover in the subgraph
induced by S. In contrast to matching games, in vertex cover
games, agents want to minimize their assigned cost shares.
Hence, the definitions of core, excess, and nucleolus should
be changed accordingly. In addition, the sequence of linear
programs Pk can be rewritten as follows.
(P ′k) max ε

s.t. x(S) + ε ≤ f(S),∀ S /∈ fix(P ′k−1(ε′k−1))

x ∈ P ′k−1(ε′k−1)

xi ≥ 0, ∀ i ∈ N
Let ε′k denote the optimum value of P ′k.

Note that for general graphs, computing a minimum ver-
tex cover itself is NP-hard; thus, we cannot expect to com-
pute the core or nucleolus efficiently in the classic compu-
tational model. We will therefore focus on bipartite graphs,
i.e., we assume that the underlying graph G is bipartite. For
bipartite graphs, it is well known that a minimum vertex
cover can be solved in polynomial time (Schrijver 2003).
Further, the cost of a coalition can be computed by the fol-
lowing linear program, which implies that the integral opti-
mum is equal to the fractional optimum.

f(S) = min
∑

v∈V (S)

wv · yv

s.t. yu + yv ≥ 1, ∀ e = (u, v) ∈ S
yv ≥ 0, ∀ v ∈ V (S)

For unweighted vertex cover games on bipartite graphs,
the core is always nonempty (Deng, Ibaraki, and Nagamochi
1999). The same result holds for weighted case as well,
which can be shown easily by the standard primal-dual ap-
proach (details omitted).
Theorem 4. The core of any vertex cover game on weighted
bipartite graphs is nonempty.

Computing the Least Core
For any vertex v ∈ V , let E(v) denotes the set of edges
(i.e., agents) adjacent to vertex v. Now we use the following
linear program to compute the least core.

(P ?
1) max ε

s.t. x(E(v)) + ε ≤ f(E(v)), ∀ v ∈ V
x(N) = f(N)

xi ≥ 0, ∀ i ∈ N
where x(E(v)) =

∑
i∈E(v) xi.

Lemma 4. ε′1 = ε?1 and the least core P ′1(ε′1) = P ?
1 (ε?1),

where ε′1 and ε?1 are the optimum of P ′1 and P ?
1 , respectively.

Thus, the least core can be computed in polynomial time.

1323

Proof. First, it can be seen that ε′1 ≤ ε?1, since P ?
1 is a relax-

ation of P ′1. Next, for any x ∈ P ?
1 (ε?1) and any S ⊆ N , we

have the following inequalities (where CS denotes a mini-
mum vertex cover on the subgraph induced by S).

f(S)− x(S) =
∑
v∈CS

wv −
∑
i∈S

xi

≥
∑
v∈CS

(
wv −

∑
i∈S: v∈i

xi
)

≥
∑
v∈CS

(
wv −

∑
i∈N : v∈i

xi
)

≥
∑
v∈CS

(
f(E(v))−

∑
i∈N : v∈i

xi
)

≥ ε?1 · |CS | ≥ ε?1
where the last inequality follows from Theorem 4, which
says the core is nonempty and thus ε?1 ≥ 0. Therefore, by
the definition of ε′1, we have ε′1 ≥ ε?1. Thus, ε′1 = ε?1.

Next we show that P ′1(ε′1) = P ?
1 (ε?1). First, it can be

seen that P ′1(ε′) ⊆ P ?
1 (ε?1), since ε′1 = ε?1 and P ′1(ε′) is

a relaxation of P ?
1 (ε?1). On the other hand, since for any

x ∈ P ?
1 (ε?1), x also satisfies the constraints of P ′1 and

gives the optimum. Therefore, x ∈ P ′1(ε′1); this implies that
P ?

1 (ε?1) ⊆ P ′1(ε′1).

Note that the above lemma also holds for fractional ver-
tex cover games on non-bipartite graphs. In addition, in the
above proof, if we let S = N , then f(N) − x(N) ≥ ε?1.
Since f(N) = x(N) and ε?1 ≥ 0, we have ε?1 = 0. This
further implies that all inequalities in the above proof of
f(S) − x(S) ≥ ε?1 are tight. Thus, for any vertex v in a
minimum vertex cover of G, wv −

∑
i∈N : v∈i xi = 0 and

E(v) ∈ fix(P ′1(ε′1)).

Computing the Nucleolus
Having obtained a characterization for the least core, we
next consider how to maximize the minimum excess among
unfixed coalitions efficiently. The basic idea here is that the
excess of a coalition can be decomposed according to ver-
tices with their neighborhoods.

Given an allocation vector x, we first identify all neigh-
borhoods of a vertex which may possibly have the minimum
excess. For any v ∈ V , define

T (v) =
{
E(v)

}
∪

⋃
i∈E(v)

{
i
}
∪

⋃
i∈E(v)

{
E(v)− {i}

}
.

Note that T (v) is the collection of subsets of E(v), includ-
ing all those with size 1, |E(v)| − 1, or |E(v)|. After kth
iteration, we remove all fixed subsets from T (v); denote the
resulting collection by Sk(v). That is,

Sk(v) = T (v)− fix(P ′k(ε′k)).

An important property of Sk(v) it that it includes a subset
which gives the smallest possible excess among all unfixed
subsets of E(v), shown by the following lemma.

Lemma 5. Let x be any allocation vector. For any v ∈ V ,
there exists S̄ ∈ Sk(v) such that f(S) − x(S) ≥ f(S̄) −
x(S̄), for any S ⊆ E(v) with S /∈ fix(P ′k(ε′k)).

Proof. Consider any S ⊆ E(v) with S /∈ fix(P ′k(ε′k)). Let
VS = V (S) − {v}. Then f(S) = min

{
wv, w(VS)

}
. We

consider the two cases.

• If wv ≤ w(VS), then f(S) − x(S) = wv − x(S). If
E(v) ∈ Sk(v), since wv ≤ w(VS) ≤ w(VE(v)), we have

wv − x(S) ≥ wv − x(E(v)) = f(E(v))− x(E(v)).

Thus, E(v) gives the desired S̄.
Otherwise, then we have E(v) ∈ fix(P ′k(ε′k)). Since S /∈
fix(P ′k(ε′k)), there exists an edge ē ∈ E(v)−S such that
{ē} is not fixed. Let S̄ = E(v)−{ē}; note that S̄ ∈ Sk(v)
and S ⊆ S̄. Since wv ≤ w(VS) ≤ w(VS̄), we have

f(S)−x(S) = wv−x(S) ≥ wv−x(S̄) = f(S̄)−x(S̄).

• If wv > w(VS), then

f(S)− x(S) =
∑

i=(v,v′)∈S

(wv′ − xi).

Let S̄ =
{
ī
}

, where ī is an unfixed edge in S (note
that such an edge always exists as S is not fixed). Then
f(S) − x(S) ≥ f(S̄) − x(S̄) as all components in the
above summation is non-negative.

This completes the proof.

During the iterative procedure, after k iterations, define
Tk =

{
v ∈ V | E(v) ∈ fix(P ′k(ε′k))

}
to be the set of

vertices for which their adjacent edges are fixed, and define
Nk = fix(P ′k(ε′k))∩N to be the set of agents whose alloca-
tions have been fixed, denoted by αi. Note that both Tk and
Nk can be constructed in polynomial time.

Now we consider the following linear program.

(P ?
k) max ε

s.t. x(S) + ε ≤ f(S), ∀ S ∈ Sk−1(v), ∀ v ∈ V
xi = αi, ∀ i ∈ Nk−1

x(E(v)) = f(E(v)), ∀ v ∈ Tk−1

x(N) = f(N)

xi ≥ 0, ∀ i ∈ N
Lemma 6. For any k, ε′k = ε?k and P ′k(ε′k) = P ?

k (ε?k), where
ε′k and ε?k are the optimum values of P ′k(ε′k) and P ?

k (ε?k),
respectively.

Proof. We prove by induction. The basis case k = 1 follows
from Lemma 4. Assume that the lemma holds for values less
than k. We next prove the claim for the value k.

We first show that P ?
k is a relaxation of P ′k (note that this

implies that ε′k ≤ ε?k). Consider any (x, ε) that satisfies P ′k.
For any S fixed by P ′k−1(ε′k−1), x(S) has a fixed value. By
the induction hypothesis, P ′k−1(ε′k−1) = P ?

k−1(ε?k−1); thus,
fix(P ′k−1(ε′k−1)) = fix(P ?

k−1(ε?k−1)). Hence, Nk−1 and⋃
v∈Tk−1

E(v) are in fix(P ?
k−1(ε?k−1)); this implies that

(x, ε) satisfies the equality constraints of P ?
k . For any v ∈ V

and S ∈ Sk−1(v), since S /∈ fix(P ?
k−1(ε?k−1)), (x, ε) also

satisfies the inequality constraints of P ?
k .

Second, we show that for any x ∈ P ?
k (ε?k),

x ∈ P ?
k−1(ε?k−1), i.e., (x, ε?k−1) satisfies P ?

k−1. If k = 2, as
ε?1 = 0 according to Lemma 4, we can see that x is also a

1324

core allocation. If k > 2, since P ′k−1(ε′k−1) ⊆ P ′k−2(ε′k−2),
we have fix(P ′k−2(ε′k−2)) ⊆ fix(P ′k−1(ε′k−1)). Thus,
Nk−2 ⊆ Nk−1 and Tk−2 ⊆ Tk−1, and the equality con-
straints are satisfied. For the inequality constraints, consider
any vertex v ∈ V and any set S ∈ Sk−2(v).
• If S ∈ Sk−1(v), then f(S) − x(S) ≥ ε?k. Since P ?

k is
a relaxation of P ′k, we have ε?k ≥ ε′k ≥ ε′k−1 = ε?k−1.
Hence, f(S)− x(S) ≥ ε?k−1.
• Otherwise, S /∈ Sk−1(v). By the definition of Sk−2(v)

and Sk−1(v), we know that x(S) is newly fixed in
P ′k−1(ε′k−1), which is P ?

k−1(ε?k−1) by the hypothesis
assumption. Thus, f(S)− x(S) = ε?k−1.

Hence, the inequality constraints are also satisfied.
We next show that for any optimal solution x of P ?

k
which yields the optimum value ε?k and any S ⊆ N with
S /∈ fix(P ′k−1(ε′k−1)), f(S)− x(S) ≥ ε?k. Let C be a min-
imum vertex cover of the subgraph induced by S. Then,

f(S)− x(S) =
∑
v∈C

wv −
∑
i∈S

xi =
∑
v∈C

(
wv −

∑
i∈S: v∈i

xi
)
.

If for any v ∈ C, {i ∈ S | v ∈ i} is fixed by P ′k−1(ε′k−1),
then S is also fixed by P ′k−1(ε′k−1), a contradiction. Hence,
there exists v ∈ C such that {i ∈ S | v ∈ i} is not fixed by
P ′k−1(ε′k−1), then by Lemma 5, there exists S̄ ∈ Sk−1(v)

such that f(S)− x(S) ≥ f(S̄)− x(S̄), which is at least ε?k.
Given the above analysis, we are ready to finish the in-

ductive step. For any x ∈ P ?
k (ε?k), we have x ∈ P ?

k (ε?k) ⊆
P ?
k−1(ε?k−1) = P ′k−1(ε′k−1), As for any S ⊆ N that is not

fixed by P ′k−1(ε′k−1), f(S) − x(S) ≥ ε?k, we know that
(x, ε?k) satisfies the constraints of P ′k, i.e., x ∈ P ′k(ε′k) and
P ?
k (ε?k) ⊆ P ′k(ε′k). This further implies that ε?k ≤ ε′k, and

thus, ε?k = ε′k. The proof of P ′k(ε′k) ⊆ P ?
k (ε?k) follows by a

similar argument. This finishes the proof.

Note that each program P ?
k has polynomial size, and the

whole iterations terminate within |N | programs. Therefore,
we have the following theorem.
Theorem 5. The nucleolus of vertex cover games on
weighted bipartite graphs are in polynomial time solvable.

Conclusions
We study fractional matching and vertex cover games, and
give efficient algorithms to compute the least core and
nucleolus. These algorithms can be respectively general-
ized to computing the nucleolus of the following two games:
• Fractional edge cover games on general weighted graphs:

Agents are vertices and f(S) of a coalition S is the cost
of a minimum fractional edge cover of S.

• Clique (or equivalently, independent set) games on
weighted bipartite graphs: Agents are edges and f(S) is
the value of a maximum bipartite complete graph of S.

All these games are combinatorial optimization games and
have been studied in (Deng, Ibaraki, and Nagamochi 1999).
A common feature of these games is that their cores are
nonempty. Our algorithms build on this fact and the com-
binatorial structures of the problems. It is an interesting di-
rection to explore the computation of the nucleolus of other
combinatorial optimization games.

References
Aumann, R., and Maschler, M. 1985. Game theoretic analysis
of a bankruptcy problem from the talmud. J. of Economic Theory
36:195–213.
Aziz, H.; Lachish, O.; Paterson, M.; and Savani, R. 2009. Wire-
tapping a hidden network. In WINE, 438–446.
Biro, P.; Kern, W.; and Paulusma, D. 2012. Computing solutions
for matching games. Interntional J. Game Theory 41:75–90.
Branzei, R.; Inarra, E.; Tijs, S.; and Zarzuelo, J. 2006. A simple
algorithm for the nucleolus of airport profit games. Interntional J.
Game Theory 34:259–272.
Deng, X., and Papadimitriou, C. H. 1994. On the complexit of co-
operative solution concepts. Mathematics of Operations Research
19:257–266.
Deng, X.; Fang, Q.; and Sun, X. 2009. Finding nucleolus of flow
game. J. Combinatorial Optimization 18:64–86.
Deng, X.; Ibaraki, T.; and Nagamochi, H. 1999. Algorithmic as-
pects of the core of combinatorial optimization games. Mathemat-
ics of Operations Research 24:751–766.
Elkind, E., and Pasechnik, D. 2009. Computing the nucleolus of
weighted voting games. In SODA, 327–335.
Elkind, E.; Goldberg, L.; Goldberg, P.; and Wooldridge, M. 2007.
Computational complexity of weighted threshold games. In AAAI,
718–723.
Faigle, U.; Kern, W.; and Kuipers, J. 1998. Computing the nucle-
olus of min-cost spanning tree games is NP-hard. International J.
of Game Theory 27:443–450.
Granot, D.; Maschler, M.; Owen, G.; and Zhu, W. R. 1996. The
kernel/nucleolus of a standard tree game. International J. of Game
Theory 25:219–244.
Kern, W., and Paulusma, D. 2003. Matching games: The least core
and the nucleolus. Mathematics of Operations Research 28:294–
308.
Kopelowitz, A. 1967. Computation of the Kernels of Simple Games
and the Nucleolus of n-Person Games. RM-31, Hebrew University
of Jerusalem.
Lemaire, J. 1984. An application of game theory: Cost allocation.
ASTIN Bulletin 14:61–81.
Maschler, M.; Peleg, B.; and Shapley, L. S. 1979. Geometric prop-
erties of the kernel, nucleolus, and related solution concepts. Math-
ematics of Operations Research 4:303–338.
Megiddo, N. 1978. Computational complexity and the game theory
approach to cost allocation for a tree. Mathematics of Operations
Research 3:189–196.
Owen, G. 1975. On the core of linear production games. Mathe-
matical Programming 9:358–370.
Schmeidler, D. 1969. The nucleolus of a characteristic function
game. SIAM J. Appl. Math. 17:11631170.
Schrijver, A. 2003. Combinatorial Optimization: Polyhedra and
Efficiency. Springer.
Shapley, L., and Shubik, M. 1971. The assignment game i: The
core. Interntional J. Game Theory 1:111–130.
Solymosi, T., and Raghavan, T. 1994. An algorithm for finding
the nucleolus of assignment games. Interntional J. Game Theory
23:119–143.

1325

