
Generalization in Graph Neural Networks: Improved PAC-Bayesian
Bounds on Graph Diffusion

Haotian Ju∗, Dongyue Li∗, Aneesh Sharma†, and Hongyang R. Zhang∗

∗Northeastern University, Boston
†Google, Mountain View

Abstract

Graph neural networks are widely used tools for graph prediction tasks. Motivated by their empirical
performance, prior works have developed generalization bounds for graph neural networks, which scale
with the graph structure in terms of the max degree. In this work, we present generalization bounds
that instead scale with the largest singular value of the graph neural network’s diffusion matrix. These
bounds are numerically much smaller than prior bounds for real-world graphs. We also construct a lower
bound for the generalization gap, which matches the bounds on the graph diffusion matrix. To achieve
these results, we analyze a unified model that includes prior works’ settings (i.e., convolutional and
message-passing networks) and new settings (i.e., graph isomorphism networks). Our analysis examines
a graph neural network’s stability against noise perturbations using Hessians. Empirically, Hessian-
based bounds closely match observed generalization gaps of graph neural networks. Algorithmically,
enhancing their noise stability leads to better test scores on several graph classification tasks.

1 Introduction
A central measure of success for a machine learning model is the ability to generalize well from the
training set to the test set. For linear and shallow models, the generalization gap (i.e., the gap between
their testing performance and training performance) can be quantified by complexity notions such as the
Vapnik–Chervonenkis dimension and Rademacher complexity. However, formally explaining the empirical
generalization performance of deep models remains a challenging problem and an active research area (see,
e.g., Hardt and Recht [25]). There are by now many studies for fully-connected and convolutional neural
networks that provide an explanation for their superior empirical performance [4, 43]. Our work seeks to
formally understand generalization in graph neural networks (GNN) [45], which are commonly used for
learning on graphs [23].

As an example of a concrete setting in which understanding generalization is crucial for performance,
we consider the fine-tuning of pretrained graph neural networks [27]. Given a pretrained GNN learned on a
diverse range of graphs, fine-tuning the pretrained GNN on a specific prediction task is a common transfer
learning approach. A practical challenge is that, on the one hand, the pretrained GNN uses many parameters
to ensure sufficient representation. On the other hand, during the fine-tuning stage, the fine-tuned GNN
can easily overfit and incur a large generalization gap between its test and training losses. Thus, a better
understanding of generalization in GNN would help us identify the cause of this problem and, as a result,
inform the design of robust fine-tuning methods for graph neural networks.

Published in Artificial Intelligence and Statistics (AISTATS), 2023. Email correspondence: ho.zhang@northeastern.edu.

1

IMDB-B IMDB-M COLLAB REDDIT-B REDDIT-M

20

23

26

29

212
Max Degree of G

Spectral Norm of A

Spectral Norm of D̃−
1
2ÃD̃−

1
2

(a) Spectral norm vs. max degree for five graphs

l = 2 l = 3 l = 4 l = 5 l = 6

0.4

0.8

1.2

Prior Generalization Bound (Right Axis)

Hessian Based Measure (Left Axis)

Observed Generalization Gap (Left Axis)

102

107

1012

(b) Comparing generalization bounds

Figure 1: Left: Our spectral norm bounds for graph diffusion matrices are orders of magnitude smaller than
maximum degree bounds on real-world graphs; In Figure 1a, we measure the spectral norm and the max
degree for five graph datasets. Right: In Figure 1b, our Hessian-based generalization measure (plotted in
green, scaled according to the left axis) matches the empirically observed generalization gaps of graph neural
networks (plotted in yellow, scaled according to the left axis). The blue line shows a uniform-convergence
bound (scaled according to the right axis) that is orders of magnitude larger than the observed gaps.

A naive application of the generalization bounds for fully-connected feedforward networks [4, 42]
would imply an extra term in the generalization bound that scales with 𝑛𝑙−1, where 𝑛 is the number of
nodes in the graph, hence rendering the error bounds vacuous. Besides, Scarselli et al. [46] shows that the
VC dimension of GNN scales with 𝑛. Thus, although the VC dimension is a classical notion for deriving
learning bounds, it is oblivious to the graph structure. Recent works have taken a step towards addressing
this issue with better error analysis. Verma and Zhang (2019) find that one-layer graph neural networks
satisfy uniform stability properties [49] (following the work of Hardt et al. [26]). The generalization bound
of Verma and Zhang [49] scales with the largest singular value of the graph diffusion matrix of the model.
However, their analysis only applies to a single layer and node prediction. Garg et al. (2020) analyze an
𝑙 layer message-passing neural network — with 𝑙 − 1 graph diffusion layers and 1 pooling layer — for
graph prediction tasks [16]. Their result scales with 𝑑𝑙−1, where 𝑑 is the maximum degree of the graph.
Subsequently, Liao et al. (2021) develop a tighter bound but still scales with 𝑑𝑙−1 [37]. For both results, the
graph’s maximum degree is used to quantify the complexity of node aggregation in each diffusion step.

In this paper, our major contribution is to improve the generalization bound by reducing the max
degree dependence to the spectral norm of the graph diffusion matrix. We analyze the stability of a graph
neural network against noise injections. Denote an 𝑙-layer GNN by 𝑓 . Based on PAC-Bayesian analysis
[39], the generalization gap of 𝑓 will be small if 𝑓 remains stable against noise injections; otherwise,
the generalization gap of 𝑓 will be large. By quantifying the noise stability of 𝑓 via Lipschitz-continuity
properties of its activation functions, one can get PAC-Bayes bounds for feedforward networks that correlate
with their observed generalization gaps [12, 2, 31, 34]. Our paper uses a refined stability analysis of graph
neural networks through Hessians and shows tight generalization bounds on the graph diffusion matrix.

Our Contributions. The goal of this work is to improve the theoretical understanding of generalization in
graph neural networks, and in that vein, we highlight two results below:

• First, we prove sharp generalization bounds for message-passing neural networks [9, 17, 33], graph
convolutional networks [35], and graph isomorphism networks [54]. Our bounds scale with the spectral
norm of 𝑃𝑙−1

𝐺
for an 𝑙-layer network, where 𝑃

𝐺
denotes a diffusion matrix on a graph 𝐺 and varies

between different models (see Theorem 3.1 for the full statement). We then show a matching lower
bound instance where the generalization gap scales with the spectral norm of 𝑃𝑙−1

𝐺
(see Theorem 3.2).

2

• Second, our stability analysis of graph neural networks provides a practical tool for measuring gener-
alization. Namely, we show that the noise stability of GNN can be measured by the trace of the loss
Hessian matrix. The formal statement is given in Lemma 4.3, and our techniques, which include a
uniform convergence of the Hessian matrix, may be of independent interest. We note that the proof
applies to twice-differentiable and Lipschitz-continuous activation functions (e.g., tanh and sigmoid).

Taken together, these two results provide a sharp understanding of generalization in terms of the graph
diffusion matrix for graph neural networks. We note that the numerical value of our bounds in their
dependence on the graph is much smaller than prior results [16, 37], as is clear from Figure 1a. Moreover,
the same trend holds even after taking weight norms into account (see Figure 2, Section 3.3). Further,
the Hessian-based bounds (see Lemma 4.3, Section 4) are non-vacuous, matching the scale of empirically
observed generalization gaps in Figure 1b.

Finally, motivated by the above analysis, we also present an algorithm that performs gradient updates
on perturbed weight matrices of a GNN. The key insight is that minimizing the average loss of multiple
perturbed models with independent noise injections is equivalent to regularizing 𝑓 ’s Hessian in expectation.
We conduct experiments on several graph classification tasks with Molecular graphs that show the benefit
of this algorithm in the fine-tuning setting.

2 Related Work
Generalization Bounds: An article by Zhang et al. (2017) finds that deep nets have enough parameters to
memorize real images with random labels, yet they still generalize well if trained with true labels. This
article highlights the overparametrized nature of modern deep nets (see also a recent article by Arora [1]),
motivating the need for complexity measures beyond classical notions. In the case of two-layer ReLU
networks, Neyshabur et al. (2019) show that (path) norm bounds better capture the “effective number of
parameters” than VC dimension—which is the number of parameters for piecewise linear activations [5].

For multilayer networks, subsequent works have developed norm, and margin bounds, either via
Rademacher complexities [4, 20, 38], or PAC-Bayesian bounds [2, 42, 36, 34]. All of these bounds apply to
the fine-tuning setting following the distance from the initialization perspective. Our analysis approach
builds on the work of Arora et al. (2018) and Ju et al. (2022). The latter work connects perturbed losses
and Hessians for feedforward neural networks, with one limitation Hessians do not show any explicit
dependence on the data. This is a critical issue for GNN as we need to incorporate the graph structure in
the generalization bound. Our result instead shows an explicit dependence on the graph and applies to
message-passing layers that involve additional nonlinear mappings. We will compare our analysis approach
and prior analysis in more detail when we present the proofs in Section 4 (see Remark 4.4).

Graph Representation Learning: Most contemporary studies of learning on graphs consider either node-
level or graph-level prediction tasks. Our result applies to graph prediction while permitting an extension to
node prediction: see Remark 4.2 in Section 4. Most graph neural networks follow an information diffusion
mechanism on graphs [45]. Early work takes inspiration from ConvNets and designs local convolution on
graphs, e.g., spectral networks [6], GCN [35], and GraphSAGE [24] (among others). Subsequent works have
designed new architectures with graphs attention [48] and isomorphism testing [54]. Gilmer et al. (2017)
synthesize several models into a framework called message-passing neural networks. Besides, one could
also leverage graph structure in the pooling layer (e.g., differentiable pooling and hierarchical pooling
[59, 62]). It is conceivable that one can incorporate the model complexity of these approaches into our
analysis. Recent work applies pretraining to large-scale graph datasets for learning graph representations
[27]. Despite being an effective transfer learning approach, few works have examined the generalization of
graph neural nets in the fine-tuning step.

3

Besides learning on graphs, GNNs are also used for combinatorial optimization [47] and causal reasoning
[55]. There is another approach for graph prediction using kernels [50, 11]. There are also alternative graph
diffusion processes besides GNN [18, 19, 61]. For references, see review articles [23, 7, 13, 53].

Generalization in GNN: Recent work explores generalization by formalizing the role of the algorithm,
and the alignment between networks and tasks [56]. Esser et al. [14] finds that transductive Rademacher
complexity-based bound provides insights into the behavior of GNNs (e.g., under stochastic block models).
Besides, there are works about size generalization, which refer to performance degradation when models
extrapolate to graphs of different sizes from the input [47, 58]. It is conceivable that the new tools we have
developed may be useful for studying extrapolation.

Expressivity of GNN: The expressivity of GNN for graph classification can be related to graph isomorphism
tests and has connections to one-dimensional Weisfeiler-Lehman testing of graph isomorphism [41, 54].
This implies limitations of GNN for expressing tasks such as counting cycles [44, 8, 3]. The expressiveness
view seems orthogonal to generalization, which instead concerns the sample efficiency of learning. For
further discussions and references, see a recent survey by Jegelka [30].

3 Sharp Generalization Bounds for Graph Neural Networks
We first introduce the problem setup for analyzing graph neural networks. Then, we state our generalization
bounds for graph neural networks and compare them with the prior art. Lastly, we construct an example to
argue that our bounds are tight.

3.1 Problem setup

Consider a graph-level prediction task. Suppose we have 𝑁 examples in the training set; each example is
an independent sample from a distribution denoted as D. In each example, we have an undirected graph
denoted as 𝐺 = (𝑉 , 𝐸), which describes the connection between 𝑛 entities, represented by nodes in 𝑉 . For
example, a node could represent a molecule, and an edge between two nodes indicates a bond between
two molecules. Each node also has a list of 𝑑 features. Denote all node features as an 𝑛 by 𝑑 matrix 𝑋 . For
graph-level prediction tasks, the goal is to predict a graph label 𝑦 for every example. We will describe a few
examples of such tasks later in Section 5.2.

Message-passing neural networks (MPNN). We study a model based on several prior works for graph-
level prediction tasks [9, 17, 16, 37]. Let 𝑙 be the number of layers: the first 𝑙 − 1 layers are diffusion layers,
and the last layer is a pooling layer. Let 𝑑𝑡 denote the width of each layer for 𝑡 from 1 up to 𝑙 . There are
several nonlinear mappings in layer 𝑡 , denoted as 𝜙𝑡 , 𝜌𝑡 , and𝜓𝑡 ; further, they are all centered at zero. There
is a weight matrix𝑊 (𝑡) of dimension 𝑑𝑡−1 by 𝑑𝑡 for transforming neighboring features, and another weight
matrix𝑈 (𝑡) of dimension 𝑑 by 𝑑𝑡 for transforming the anchor node feature.

For the first 𝑙 − 1 layers, we recursively compute the node embedding from the input features 𝐻 (0) = 𝑋 :

𝐻 (𝑡) = 𝜙𝑡

(
𝑋𝑈 (𝑡) + 𝜌𝑡

(
𝑃
𝐺
𝜓𝑡 (𝐻 (𝑡−1))

)
𝑊 (𝑡)

)
. (1)

For the last layer 𝑙 , we aggregate the embedding of all nodes: let 1𝑛 be a vector with 𝑛 values of one:

𝐻 (𝑙) =
1
𝑛
1⊤𝑛𝐻

(𝑙−1)𝑊 (𝑙) . (2)

Note that this setting subsumes many existing GNNs. Several common designs for the graph diffusion
matrix 𝑃

𝐺
would be the adjacency matrix of the graph (denoted as 𝐴). 𝑃

𝐺
can also be the normalized

adjacency matrix, 𝐷−1𝐴, with 𝐷 being the degree-diagonal matrix. Adding an identity matrix in 𝐴 is
equivalent to adding self-loops in 𝐺 . In GCN, we can set𝑈 (𝑡) as zero, 𝜌𝑡 and𝜓𝑡 as identity mappings.

4

Notations. For any matrix 𝑋 , let ∥𝑋 ∥ denote the largest singular value (or spectral norm) of 𝑋 . Let ∥𝑋 ∥𝐹
denote the Frobenius norm of 𝑋 . We use the notation 𝑓 (𝑁) ≲ 𝑔(𝑁) to indicate that there exists a fixed
constant 𝑐 that does not grow with 𝑁 such that 𝑓 (𝑁) ≤ 𝑐 · 𝑔(𝑁) for large enough values of 𝑁 . Let𝑾 and
𝑼 denote the union of the𝑊 and𝑈 matrices in a model 𝑓 , respectively.

3.2 Main results

Given a message-passing neural network denoted as 𝑓 , what can we say about its generalization perfor-
mance? Let 𝑓 (𝑋,𝐺) denote the output of 𝑓 , given input with graph 𝐺 , node feature matrix 𝑋 , and label
𝑦. The loss of 𝑓 for this input example is denoted as ℓ (𝑓 (𝑋,𝐺), 𝑦). Let 𝐿̂(𝑓) denote the empirical loss of 𝑓
over the training set. Let 𝐿(𝑓) denote the expected loss of 𝑓 over a random example of distribution D. We
are interested in the generalization gap of 𝑓 , i.e., 𝐿(𝑓) − 𝐿̂(𝑓). How would the graph diffusion matrix 𝑃

𝐺

affect the generalization gap of graph neural networks?
To motivate our result, we examine the effect of incorporating graph diffusion in a one-layer linear

neural network. That is, we consider 𝑓 (𝑋,𝐺) to be 1
𝑛
1⊤𝑛 𝑃𝐺

𝑋𝑊 (1) , which does not involve any nonlinear
mapping for simplicity of our discussion. In this case, by standard spectral norm inequalities for matrices,
the Euclidean norm of 𝑓 (which is a vector) satisfies:

∥ 𝑓 (𝑋,𝐺)∥ =

 1
𝑛
1⊤𝑛 𝑃𝐺

𝑋𝑊 (1)

≤

 1
𝑛
1⊤𝑛

 ·

𝑃𝐺

 · ∥𝑋 ∥ ·

𝑊 (1)

 (3)

Thus, provided that the loss function ℓ (·, 𝑦) is Lipschitz-continuous, standard arguments imply that the
generalization gap of 𝑓 scales with the spectral norm of 𝑃

𝐺
(divided by

√
𝑁) [40]. Let us compare this

statement with a fully-connected neural net that averages the node features, i.e., the graph diffusion matrix
𝑃
𝐺
is the identity matrix. The spectral norm of 𝑃

𝐺
becomes one. Together, we conclude that the graph

structure affects the generalization bound of a single layer GNN by adding the spectral norm of 𝑃
𝐺
.

Our main result is that incorporating the spectral norm of the graph diffusion matrix 𝑃𝑙−1
𝐺

is sufficient
for any 𝑙 layer MPNN. We note that the dependence is a power of 𝑙 −1 because there are 𝑙 −1 graph diffusion
layers: see equation (1). Let 𝑓 be an 𝑙-layer network whose weights𝑾 , 𝑼 are defined within a hypothesis
setH : For every layer 𝑖 from 1 up to 𝑙 , we have that

𝑊 (𝑖)

 ≤𝑠𝑖 ,

𝑊 (𝑖)

𝐹
≤ 𝑠𝑖𝑟𝑖 ,

𝑈 (𝑖)

 ≤𝑠𝑖 ,

𝑈 (𝑖)

𝐹

≤ 𝑠𝑖𝑟𝑖 , (4)

where 𝑠1, 𝑠2, . . . , 𝑠𝑙 and 𝑟1, 𝑟2, . . . , 𝑟𝑙 are bounds on the spectral norm and stable rank and are all greater than
or equal to one, without loss of generality. We now present the full statement.

Theorem 3.1. Suppose the nonlinear activation in {𝜙𝑡 , 𝜌𝑡 ,𝜓𝑡 : ∀ 𝑡} and the loss ℓ (·, 𝑦) are twice-differentiable,
Lipschitz-continuous, and their first-order and second-order derivatives are all Lipschitz-continuous.

With probability at least 1 − 𝛿 over the randomness of 𝑁 independent samples from D, for any 𝛿 > 0, and
any 𝜖 > 0 close to zero, any model 𝑓 with weight matrices in the setH satisfies:

𝐿(𝑓) ≤ (1 + 𝜖)𝐿̂(𝑓) + O
(

log(𝛿−1)
𝑁 3/4

)
+

𝑙∑︁
𝑖=1

√√√√√
𝐶𝐵𝑑𝑖

(
max

(𝑋,𝐺,𝑦)∼D
∥𝑋 ∥2 ∥𝑃𝐺 ∥2(𝑙−1)

) (
𝑟 2
𝑖

𝑙∏
𝑗=1

𝑠2
𝑗

)
𝑁

, (5)

where 𝐵 is an upper bound on the value of the loss function ℓ across the entire data distribution, and 𝐶 is a
fixed Lipchitz constant depending on the activation’s and the loss function’s Lipschitz-continuity (see equation
(43), Appendix A.2.4).

5

Table 1: How does the generalization gap of graph neural networks scale with graph properties? In this
work, we show spectrally-normalized bounds on 𝑃

𝐺
and compare our results with prior results in the

following table. We let 𝐴 denote the adjacency matrix, 𝐷 be the degree-diagonal matrix of 𝐴, and 𝑙 be
the depth of the GNN. Previous generalization bounds scale with the graph’s maximum degree denoted
as 𝑑 . Our result instead scales with the spectral norm of 𝑃

𝐺
and applies to new settings, including graph

isomorphism networks (GIN) [54] and GraphSAGE with mean aggregation [24].

Graph Dependence GCN MPNN GIN GraphSAGE-Mean

Garg et al. (2020) 𝑑𝑙−1 𝑑𝑙−1 - -
Liao et al. (2021) 𝑑

𝑙−1
2 𝑑𝑙−1 - -

Ours (Theorems 3.1 and 4.5) 1 ∥𝐴∥𝑙−1 ∑𝑙−1
𝑖=1

∥𝐴 ∥𝑖
𝑙−1

𝐷−1𝐴

𝑙−1

As a remark, prior works by Garg et al. [16] and Liao et al. [37] consider an MPNN with𝑊 (𝑡) and𝑈 (𝑡)

being the same for 𝑡 from 1 up to 𝑙 , motivated by practical designs [17, 33]. Thus, their analysis needs to be
conducted separately for GCN and MPNN with weight tying. By contrast, our result allows𝑊 (𝑡) and 𝑈 (𝑡)

to be arbitrarily different across different layers. This unifies GCN and MPNN without weight tying in the
same framework so that we can unify their analysis. We defer the proof sketch of our result along with a
discussion to Section 4.

3.3 Comparison with prior art

In Table 1, we compare our result with prior results. We first illustrate the effects of graph properties
on the generalization bounds. Then we will also show a numerical comparison to incorporate the other
components of the bounds.

• Suppose 𝑃
𝐺
is the adjacency matrix of 𝐺 . Then, one can show that for any undirected graph 𝐺 , the

spectral norm of 𝑃
𝐺
is less than the maximum degree 𝑑 (cf. Fact A.1, Appendix A for a proof). This

explains why our result is strictly less than prior results for MPNN in Table 1.

• Suppose 𝑃
𝐺
is the normalized and symmetric adjacency matrix of 𝐺 : 𝑃

𝐺
= 𝐷̃−1/2𝐴̃𝐷̃−1/2, where 𝐴̃ is

𝐴 + Id and 𝐷̃ is the degree-diagonal matrix of 𝐴̃. Then, the spectral norm of 𝑃
𝐺
is at most one (cf. Fact

A.1, Appendix A for a proof). This fact explains why the graph dependence of our result for GCN is 1 in
Table 1. Thus, we can see that this provides an exponential improvement compared to the prior results.

Thus, for the above diffusion matrices, we conclude that the spectral norm of 𝑃
𝐺
is strictly smaller than the

maximum degree of graph 𝐺 (across all graphs in the distribution D).

Numerical Comparison. Next, we conduct an empirical analysis to compare our results and prior results
numerically. Following the setting of prior works, we use two types of models that share their weight
matrices across different layers, including GCN [35] and the MPNN specified in Liao et al. [37]. For both
models, we evaluate the generalization bounds by varying the network depth 𝑙 between 2, 4, and 6.

We consider graph prediction tasks on three collaboration networks, including IMDB-B, IMDB-M,
and COLLAB [57]. IMDB-B includes a collection of movie collaboration graphs. In each graph, a node
represents an actor or an actress, and an edge denotes a collaboration in the same movie. The task is to
classify each graph into the movie genre as Action or Romance. The IMDB-M is a multi-class extension with
the movie graph label Comedy, Romance, or Sci-Fi. COLLAB includes a list of ego-networks of scientific
researchers. Each graph includes a researcher and her collaborators as nodes. An edge in the graph indicates

6

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

Garg et al.

Liao et al.

Our Result

(a) Two-layer GCN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

(b) Four-layer GCN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

(c) Six-layer GCN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

Garg et al.

Liao et al.

Our Result

(d) Two-layer MPNN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

(e) Four-layer MPNN

IMDB-B IMDB-M COLLAB

103

109

1015

1021

1027

(f) Six-layer MPNN

Figure 2: Comparing our result and prior results [16, 37] on three graph classification tasks. Upper: The
experiments are conducted on GCNs. Lower: The experiments are conducted on MPNNs following the
setup of Liao et al. [37].

a collaboration between two researchers. The task is to classify each ego-network into the field of the
researcher, including High Energy, Condensed Matter, and Astro Physics.

We report the numerical comparison in Figure 2. We report the averaged result over three random
seeds. Our results are consistently smaller than previous results. As explained in Table 1, the improvement
comes from the spectral norm bounds on graphs compared with the max degree bounds.

3.4 A matching lower bound

Next, we show an instance with the same dependence on the graph diffusion matrix as our upper bound. In
our example:

• The graph 𝐺 is the complete graph with self-loops inserted in each node. Thus, the adjacency matrix of
𝐺 is precisely a square matrix with all ones. We will set 𝑃

𝐺
as the adjacency matrix of 𝐺 .

• In the first 𝑙 − 1 graph diffusion layers, the activation functions 𝜙, 𝜌,𝜓 are all linear functions. Further,
we fix all the parameters of 𝑼 as zero.

• The loss function ℓ is the logistic loss.

Then, we demonstrate a data distribution such that there always exists some weight matrices withinH
whose generalization gap must increase in proportion to the spectral norm of 𝑃𝑙−1

𝐺
and the product of the

spectral norm of every layer 𝑠1, 𝑠2, . . . , 𝑠𝑙 .

Theorem 3.2. Let 𝑁0 be a sufficiently large value. For any norms 𝑠1, 𝑠2, . . . , 𝑠𝑛 , there exists a data distribution
D on which with probability at least 0.1 over the randomness of 𝑁 independent samples from D, for any
𝑁 ≥ 𝑁0, the generalization gap of 𝑓 is larger than:

��𝐿(𝑓) − 𝐿̂(𝑓)
�� ≳

√√√√√ (
max

(𝑋,𝐺,𝑦)∼D

𝑃
𝐺

2(𝑙−1)
) (𝑙∏

𝑖=1
𝑠2
𝑖

)
𝑁

. (6)

7

Notice that the lower bound in (6) exhibits the same scaling in terms of𝐺—

𝑃

𝐺

𝑙−1—as our upper bound
from equation (5). Therefore, we conclude that our spectral norm bound is tight for multilayer MPNN. The
proof of the lower bound can be found in Appendix A.3.

Remark 3.3. Our results from Theorem 3.1 and 3.2 together suggest the generalization error bound scales
linearly in 𝑙 . To verify whether this is the case, we conducted an empirical study on three architectures
(GCN, GIN-Mean, and GIN-Sum) that measured the growth of generalization errors as the network depth
𝑙 varies. We find that the generalization error grows sublinearly with 𝑙 to

𝑃
𝐺

. We also note that this
sublinear growth trend has been captured by our Hessian-based generalization bound (cf. Figure 1a). It
would be interesting to understand better why the sublinear trend happens and further provide insight into
the behavior of GNN.

Remark 3.4. Theorem 3.2 suggests that in the worst case, the generalization bound would have to scale
with the spectral norms of the graph and the weight matrices. Although this is vacuous for large 𝑙 , later
in Lemma 4.1, we show a data-dependent generalization bound using the trace of the Hessians, which is
non-vacuous. As shown in Figure 1a, Hessian-based bounds match the scale of actual generalization errors:
the green line via equation (7) matches the scale of the yellow line for the actual generalization error.

4 Proof Techniques and Extensions
Our analysis for dealing with the graph structure seems fundamentally different from the existing analysis.
In the margin analysis of Liao et al. [37], the authors also incorporate the graph structure in the perturbation
error. For bounding the perturbation error, the authors use a triangle inequality that results in a (1,∞)
norm of the matrix 𝑃

𝐺
(see Lemma 3.1 of Liao et al. [37] for GCN). We note that this norm can be larger

than the spectral norm by a factor of
√
𝑛, where 𝑛 is the number of nodes in 𝐺 : in the case of a star graph,

this norm for the graph diffusion matrix of GCN is
√
𝑛. By comparison, the spectral norm of the same

matrix is less than one (see Fact A.1, Appendix A).
How can we tighten the perturbation error analysis and the dependence on 𝑃

𝐺
in the generalization

bounds, then? Our proof involves two parts:

• Part I: By expanding the perturbed loss of a GNN, we prove a bound on the generalization gap using
the trace of the Hessian matrix associated with the loss.

• Part II: Then, we explicitly bound the trace of the Hessian matrix with the spectral norm of the graph
using the Lipschitzness of the activation functions.

Part I: Measuring noise stability using the Hessian. We first state an implicit generalization bound that
measures the trace of the Hessian matrix. Let H(𝑖) denote the Hessian matrix of the loss ℓ (𝑓 (𝑋,𝐺), 𝑦)
with respect to layer 𝑖’s parameters, for each 𝑖 from 1 up to 𝑙 . Particularly, H(𝑖) is a square matrix whose
dimension depends on the number of variables within layer 𝑖 . Let H denote the Hessian matrix of the loss
ℓ (𝑓 (𝑋,𝐺), 𝑦) over all parameters of 𝑓 .

Lemma 4.1. In the setting of Theorem 3.1, with probability at least 1−𝛿 over the randomness of the 𝑁 training
examples, for any 𝛿 > 0 and 𝜖 close to 0, we get:

𝐿(𝑓) ≤ (1 + 𝜖)𝐿̂(𝑓) + (1 + 𝜖)
𝑙∑︁

𝑖=1

√√
𝐵 · max

(𝑋,𝐺,𝑦)∼D
Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

]
𝑠2
𝑖
𝑟 2
𝑖

𝑁
+ O

(
log(𝛿−1)
𝑁 3/4

)
. (7)

8

Proof Sketch. At a high level, the above result follows from Taylor’s expansion of the perturbed loss.
Suppose each parameter of 𝑓 is perturbed by an independent noise drawn from a Gaussian distribution with
mean zero and variance 𝜎2. Let ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) be the perturbed loss value of an input example 𝑋,𝐺 with
label 𝑦. Let E denote the noise injections organized in a vector. Using Taylor’s expansion of the perturbed
loss ℓ̃ , we get:

ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) − ℓ (𝑓 (𝑋,𝐺), 𝑦) = E⊤∇ℓ (𝑓 (𝑋,𝐺), 𝑦) + 1
2E

⊤H
[
ℓ (𝑓 (𝑋,𝐺), 𝑦)

]
E + O(𝜎3). (8)

Notice that the expectation of the first-order expansion term above is equal to zero. The expectation of the
second-order expansion term becomes 𝜎2 times the trace of the loss Hessian. To derive equation (7), we use
a PAC-Bayes bound of McAllester [39, Theorem 2]. There are two parts to this PAC-Bayes bound:

• The expectation of the noise perturbation in equation (8), taken over the injected noise E;

• The KL divergence between the prior and the posterior, which is at most 𝑠2
𝑖 𝑟

2
𝑖 for layer 𝑖 , for 𝑖 from 1 up

to 𝑙 , within the hypothesis setH .

Thus, one can balance the two parts by adjusting the noise variance at each layer—this leads to the layerwise
Hessian decomposition in equation (7).

A critical step is showing the uniform convergence of the Hessian matrix. We achieve this based on the
Lipschitz-continuity of the first and twice derivatives of the nonlinear activation mappings. With these
conditions, we prove the uniform convergence with a standard 𝜖-cover argument. The complete proof can
be found in Appendix A.2.1.

Remark 4.2. Our argument in Lemma 4.1 applies to graph-level prediction tasks, which assume an
unknown distribution of graphs. A natural question is whether the analysis applies to node-level prediction
tasks, which are often treated as semi-supervised learning problems. The issue with directly applying our
analysis to semi-supervised learning is that the size of a graph is only finite. Instead, a natural extension
would be to think about our graph as a random sample from some population and then argue about
generalization in expectation of the random sample. It is conceivable that one can prove a similar spectral
norm bound for node prediction in this extension. This would be an interesting question for future work.

Part II: Spectral norm bounds of the Hessian. Next, we explicitly analyze the trace of the Hessian at each
layer. We bound the trace of the Hessian with the spectral norm of the weight matrices and the graph based
on the Lipschitz-continuity conditions from Theorem 3.1. Notice that the last layer is a linear pooling layer,
which can be deduced from layer 𝑙 − 1. Hence, we consider the first 𝑙 − 1 layers below.

Lemma 4.3. In the setting of Theorem 3.1, the trace of the Hessian H(𝑖) over𝑊 (𝑖) and 𝑈 (𝑖) satisfies the
following, for any 𝑖 = 1, 2, · · · , 𝑙 − 1,���Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]] ��� ≲ 𝑠2

𝑙

(
𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

+
𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2

𝐹

+

 𝜕𝐻 (𝑙−1)

𝜕𝑊 (𝑖)

2

𝐹

+

 𝜕𝐻 (𝑙−1)

𝜕𝑈 (𝑖)

2

𝐹

)
(9)

≲ ∥𝑋 ∥2

𝑃
𝐺

2(𝑙−1)∏𝑙

𝑗=1: 𝑗≠𝑖
𝑠2
𝑗 . (10)

Proof Sketch. Equation (9) uses the chain rule to expand out the trace of the Hessian and then applies
the Lipschitzness of the loss function. Based on this result, equation (10) then bounds the first and second
derivatives of 𝐻 (𝑙−1) . This step is achieved via an induction of 𝜕𝐻 (𝑗) and 𝜕2𝐻 (𝑗) over𝑊 (𝑖) and 𝑈 (𝑖) , for
𝑗 = 1, . . . , 𝑙 − 1 and 𝑖 = 1, . . . , 𝑗 . The induction relies on the feedforward architecture and the Lipschitzness
of the first and second derivatives. We leave out a few details, such as the constants in equations (9) and
(10) that can be found in Appendix A.2.2 and A.2.3. Combining both parts together, we get equation (1).

9

Remark 4.4. We compare our analysis approach with the approach of Liao et al. [37]. While our analysis
also follows the PAC-Bayesian approach, we additionally explore Lipschitz properties of first and twice
derivatives of the activation functions (e.g., tanh and sigmoid). This allows us to measure the perturbation
loss with Hessians, which captures graph properties much more accurately than the margin analysis of
Liao et al. [37]. It would be interesting to understand if one could still achieve spectral norm bounds on
graphs under weaker conditions (e.g., with the tool of Wei and Ma [51]). This is left for future work.

4.1 Extensions

Graph isomorphism networks. This architecture concatenates every layer’s embedding together for
more expressiveness [54]. A classification layer is used after the layers. Let 𝑉 (𝑖) denote a 𝑑𝑖 by 𝑘 matrix
(recall 𝑘 is the output dimension). Denote the set of these matrices by V . We average the loss of all of
the classification layers. Let 𝐿̂

𝐺𝐼𝑁
(𝑓) denote the average loss of 𝑓 over 𝑁 independent samples of D. Let

𝐿
𝐺𝐼𝑁

(𝑓) denote the expected loss of 𝑓 over a random sample of D. See also equation (44) in Appendix A.4
for their precise definitions.

Next, we state a generalization bound for graph isomorphism networks. Let 𝑓 be any 𝑙-layer MPNN
with weights defined in a hypothesis space H : the parameters of 𝑓 reside within the constraints from
equation (4); further, for every 𝑖 from 1 up to 𝑙 , the spectral norm of 𝑉 (𝑖) is less than 𝑠𝑙 . Building on Lemma
4.3, we show a bound that scales with the spectral norm generalization of the averaged graph diffusion
matrices. Let 𝑃

𝐺𝐼𝑁
denote the average of 𝑙 − 1 matrices: 𝑃

𝐺
, 𝑃2

𝐺
, . . . , 𝑃𝑙−1

𝐺
. We state the result below.

Corollary 4.5. Suppose the nonlinear activation mappings and the loss function satisfy the conditions stated
in Theorem 3.1. With probability at least 1 − 𝛿 for any 𝛿 ≥ 0, and any 𝜖 close to zero, any 𝑓 inH satisfies:

𝐿
𝐺𝐼𝑁

(𝑓) ≤ (1 + 𝜖)𝐿̂
𝐺𝐼𝑁

(𝑓) +
𝑙∑︁

𝑖=1

√√√√√
𝐵𝐶𝑑𝑖 ·

(
max

(𝑋,𝐺,𝑦)∼D
∥𝑋 ∥2

𝑃

𝐺𝐼𝑁

2
) (
𝑟 2
𝑖

𝑙∏
𝑗=1

𝑠2
𝑗

)
𝑁

+ O
(

log(𝛿−1)
𝑁 3/4

)
, (11)

where 𝐵 is an upper bound on the value of the loss function ℓ across the data distribution D, and 𝐶 is a fixed
constant that only depends on the Lipschitz-continuity of the activation mappings and the loss.

The proof can be found in Appendix A.4. In particular, we apply the trace norm bound over the
model output of every layer. The classification layer, which only uses a linear transformation, can also be
incorporated.

Fine-tuned Graph Neural Networks. We note that all of our bounds can be applied to the fine-tuning
setting, where a graph neural network is initialized with pretrained weights and then fine-tuned on the
target task. The results can be extended to this setting by setting the norm bounds within equation (4) as
the distance between the pretrained and fine-tuned model.

5 Optimizing Noise Stability Properties for Fine-tuning GNN
A common practice is to take a pretrained model and fine-tune it for a target problem. This can result in a
large generalization gap for the fine-tuned model as typically only a small amount of data is available for
fine-tuning. A central insight from our PAC-Bayesian analysis is that maintaining a small perturbed loss
ensures lower generalization gaps. Motivated by this observation, we present an algorithm to minimize the
perturbed loss of a model.

Let 𝑓 denote a model and ℓ̃ (𝑓) be the perturbed loss of 𝑓 , with noise injected inside 𝑓 ’s weight matrices.
Recall from step (8) that ℓ̃ (𝑓) is equal to ℓ (𝑓) plus several expansion terms. In particular, minimizing the

10

Algorithm 1 Noise stability optimization for fine-tuning graph neural networks
Input: A training dataset {(𝑋𝑖 ,𝐺𝑖 , 𝑦𝑖)}𝑁𝑖=1 with node feature 𝑋𝑖 , graph 𝐺𝑖 , and graph-level label 𝑦𝑖 , for 𝑖 = 1, . . . , 𝑁 .
Require: Number of perturbations𝑚, noise variance 𝜎2, learning rate 𝜂, and number of epochs 𝑇 .
Output: A trained model 𝑓 (𝑇) .
1: At 𝑡 = 0, initialize the parameters of 𝑓 (0) with pretrained GNN weight matrices.
2: for 1 ≤ 𝑡 ≤ 𝑇 do
3: for 1 ≤ 𝑖 ≤ 𝑚 do
4: Add perturbation E𝑖 drawn from a normal distribution with mean zero and variance 𝜎2.
5: Let 𝐿̃𝑖 (𝑓 (𝑡−1)) be the training loss of the model 𝑓 (𝑡−1) with weight matrix perturbed by E𝑖 .
6: Let 𝐿̃′

𝑖 (𝑓 (𝑡−1)) be the training loss of the model 𝑓 (𝑡−1) with weight matrix perturbed by −E𝑖 .
7: end for
8: Use stochastic gradient descent to update 𝑓 (𝑡) as 𝑓 (𝑡−1) − 𝜂

2𝑚
∑𝑚

𝑖=1
(
∇𝐿̃𝑖

(
𝑓 (𝑡−1)) + ∇𝐿̃′

𝑖

(
𝑓 (𝑡−1))) .

9: end for

expectation of ℓ̃ (𝑓) is equivalent to minimizing 𝐿̂(𝑓) plus the trace of the Hessian matrix. To estimate this
expectation, we sample several noise perturbations independently. Because Taylor’s expansion of ℓ̃ (𝑓) also
involves the gradient, we cancel this out by computing the perturbed loss with the negated perturbation.
Algorithm 1 describes the complete procedure.

We evaluate the above algorithm for fine-tuning pretrained GNNs. Empirical results reveal that this
algorithm achieves better test performance compared with existing regularization methods for five graph
classification tasks.

5.1 Experimental setup

We focus on graph classification tasks, including five datasets from the MoleculeNet benchmark [52]. In
each dataset, the goal is to predict whether a molecule has a certain chemical property given its graph
representation. We use pretrained GINs from Hu et al. [27] and fine-tune the model on each downstream
task. Following their experimental setup, we use the scaffold split for the dataset, and the model architecture
is fixed for all five datasets. Each model has 5 layers; each layer has 300 hidden units and uses average
pooling in the readout layer. We set the parameters such as the learning rate and the number of epochs
following their setup.

We compare our algorithm with previous regularization methods that serve as benchmark approaches
for improving generalization. This includes early stopping, weight decay, dropout, weight averaging [29],
and distance-based regularization [21]. For implementing our algorithm, we set the number of perturbations
as 10 and choose the noise standard deviation 𝜎 with a grid search in {0.01, 0.02, 0.05, 0.1, 0.2, 0.5}.

5.2 Experimental results

Table 2 reports the test ROC-AUC performance averaged over multiple binary prediction tasks in each
dataset. Comparing the average ranks of methods across datasets, our algorithm outperforms baselines on
all five molecular property prediction datasets. The results support our theoretical analysis that the noise
stability property of GNN is a strong measure of empirical generalization performance. Next, we provide
details insights from applying our algorithm.

First, we hypothesize that our algorithm is particularly effective when the empirical generalization gap
is large. To test the hypothesis, we vary the size of the training set in the BACE dataset; we compare the
performance of our algorithm with early stopping until epoch 100. We plot the generalization gap between
the training and test losses during training, shown in Figure 3a-3b. As the trend shows, our algorithm
consistently reduces the generalization gap, particularly when the training set size 𝑁 is 600.

11

Table 2: Test ROC-AUC (%) score for five molecular property prediction datasets with different regularization
methods. The reported results are averaged over five random seeds.

Dataset SIDER ClinTox BACE BBBP Tox21
Avg. Rank# Molecule Graphs 1,427 1,478 1,513 2,039 7,831

Binary Prediction Tasks 27 2 1 1 12

Early Stopping 61.06±1.48 68.25±2.63 82.86±0.95 67.80±1.05 77.52±0.23 5.8
Weight Decay 61.30±0.21 67.43±2.88 83.72±0.99 67.98±2.41 78.23±0.35 5.0
Dropout 63.90±0.90 73.70±2.80 84.50±0.70 68.07±1.30 78.30±0.30 3.6
Weight Averaging 63.67±0.34 78.78±1.49 83.93±0.36 70.26±0.24 77.59±0.11 3.4
Distance-based Reg. 64.36±0.48 76.68±1.19 84.65±0.48 70.37±0.44 78.62±0.24 2.2

Ours (Alg. 1) 65.13±0.18 80.18±0.82 85.07±0.43 71.22±0.36 79.31±0.24 1.0

Figure 3: In Figures 3a and 3b, we show that our algorithm is particularly effective at reducing the
generalization gap for small training dataset sizes 𝑁 . In Figures 3c and 3d, we find that both the trace and
the largest eigenvalue of the loss Hessian matrix decreased during training.

0 20 40 60 80 100
Number of Epochs

0

2

4

G
en

er
al

iz
at

io
n

G
ap Early Stopping

Our Algorithm

(a) 𝑁 = 1200

0 20 40 60 80 100
Number of Epochs

0

2

4

G
en

er
al

iz
at

io
n

G
ap Early Stopping

Our Algorithm

(b) 𝑁 = 600

0 20 40 60 80 100
Number of Epochs

0.1

0.5

0.9

T
ra

ce

Early Stopping

Our Algorithm

(c) Trace

0 20 40 60 80 100
Number of Epochs

0.1

0.2

0.3

L
ar

ge
st

E
ig

en
va

lu
e

Early Stopping

Our Algorithm

(d) Largest Eigenvalue

Second, we hypothesize that our algorithm helps reduce the trace of the Hessian matrix (associated
with the loss). We validate this by plotting the trace of the Hessian as the number of epochs progresses
during training, again using the BACE dataset as an example. Specifically, we average the trace over the
training dataset. Figure 3c shows the averaged trace values during the fine-tuning process. The results
confirm that noise stability optimization reduces the trace of the Hessian matrix (more significantly than
early stopping). We note that noise stability optimization also reduces the largest eigenvalue of the Hessian
matrix, along with reducing the trace. This can be seen in Figure 3d.

Lastly, we study the number of perturbations used in our algorithm. While more perturbations would
lead to a better estimation of the noisy stability, we observe that using 10 perturbations is sufficient for
getting the most gain. We also validate that using negated perturbations consistently performs better than
not using them across five datasets. This is because the negated perturbation cancels out the first-order
term in Taylor’s expansion. In our ablation study, we find that adding the negated perturbation performs
better than not using it by 1% on average over the five datasets.

Remark. We note that noise stability optimization is closely related to sharpness-aware minimization
(SAM) [15]. Noise stability optimization differs in two aspects compared with SAM. First, SAM requires
solving constrained minimax optimization, which may not even be differentiable [10]. Our objective remains
the same after perturbation. Second, SAM reduces the largest eigenvalue of the Hessian matrix, which
can be seen from Taylor’s expansion of ℓ̃ (𝑓). We reduce the trace of the Hessian matrix, which includes
reducing the largest eigenvalue as part of the trace. There is another related work that regularizes noise
stability in NLP [28]. Their approach adds noise perturbation in the input and regularizes the loss change
in the output. Our approach directly adds the perturbation in the weight matrices.

12

6 Conclusion
This work develops generalization bounds for graph neural networks with a sharp dependence on the graph
diffusion matrix. The results are achieved within a unified setting that significantly extends prior works.
In particular, we answer an open question mentioned in Liao et al. [37]: a refined PAC-Bayesian analysis
can improve the generalization bounds for message-passing neural networks. These bounds are obtained
by analyzing the trace of the Hessian matrix with the Lipschitz-continuity of the activation functions.
Empirical findings suggest that the Hessian-based bound matches observed gaps on real-world graphs.
Thus, our work also provides a practical tool to measure generalization in graph neural networks. The
algorithmic results with noise stability optimization further demonstrate the practical implication of our
findings.

Our work opens up many interesting questions for future work. Could the new tools we have developed
be used to study generalization in graph attention networks [48]? Could Hessians be used for measuring
out-of-distribution generalization gaps of graph neural networks?

Acknowledgement
Thanks to Renjie Liao, Haoyu He, and the anonymous referees for providing constructive feedback on our
work. Thanks to Yang Yuan for the helpful discussions. HJ and DL acknowledge financial support from the
startup fund of Khoury College of Computer Sciences, Northeastern University.

References
[1] S. Arora (2021). “Technical perspective: Why don’t today’s deep nets overfit to their training data?”

In: Communications of the ACM.
[2] S. Arora, R. Ge, B. Neyshabur, and Y. Zhang (2018). “Stronger generalization bounds for deep nets

via a compression approach”. In: ICML.
[3] W. Azizian and M. Lelarge (2021). “Expressive power of invariant and equivariant graph neural

networks”. In: ICLR.
[4] P. Bartlett, D. J. Foster, and M. Telgarsky (2017). “Spectrally-normalized margin bounds for neural

networks”. In: NeurIPS.
[5] P. Bartlett, N. Harvey, C. Liaw, and A. Mehrabian (2019). “Nearly-tight VC-dimension and pseudodi-

mension bounds for piecewise linear neural networks”. In: JMLR.
[6] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun (2014). “Spectral networks and locally connected

networks on graphs”. In: ICLR.
[7] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy (2020). “Machine learning on graphs: A

model and comprehensive taxonomy”. In: arXiv preprint arXiv:2005.03675, p. 1.
[8] Z. Chen, L. Chen, S. Villar, and J. Bruna (2020). “Can graph neural networks count substructures?” In:

NeurIPS.
[9] H. Dai, B. Dai, and L. Song (2016). “Discriminative embeddings of latent variable models for structured

data”. In: ICML.
[10] C. Daskalakis, S. Skoulakis, and M. Zampetakis (2021). “The complexity of constrained min-max

optimization”. In: STOC.
[11] S. S. Du, K. Hou, R. R. Salakhutdinov, B. Poczos, R. Wang, and K. Xu (2019). “Graph neural tangent

kernel: Fusing graph neural networks with graph kernels”. In: NeurIPS.
[12] G. K. Dziugaite and D. M. Roy (2017). “Computing nonvacuous generalization bounds for deep

(stochastic) neural networks with many more parameters than training data”. In: UAI.

13

[13] F. Errica, M. Podda, D. Bacciu, and A. Micheli (2020). “A fair comparison of graph neural networks
for graph classification”. In: ICLR.

[14] P. Esser, L. Chennuru Vankadara, and D. Ghoshdastidar (2021). “Learning theory can (sometimes)
explain generalisation in graph neural networks”. In: Advances in Neural Information Processing
Systems.

[15] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur (2021). “Sharpness-aware minimization for effi-
ciently improving generalization”. In: ICLR.

[16] V. Garg, S. Jegelka, and T. Jaakkola (2020). “Generalization and representational limits of graph neural
networks”. In: ICML.

[17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl (2017). “Neural message passing for
quantum chemistry”. In: ICML.

[18] A. Goel, S. Khanna, S. Raghvendra, and H. Zhang (2014). “Connectivity in random forests and credit
networks”. In: Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete algorithms.

[19] A. Goel, K. Munagala, A. Sharma, and H. Zhang (2015). “A note on modeling retweet cascades on
Twitter”. In: Algorithms and Models for the Web Graph: 12th International Workshop, WAW 2015.

[20] N. Golowich, A. Rakhlin, and O. Shamir (2018). “Size-independent sample complexity of neural
networks”. In: COLT.

[21] H. Gouk, T. M. Hospedales, and M. Pontil (2021). “Distance-Based Regularisation of Deep Networks
for Fine-Tuning”. In: ICLR.

[22] B. Guedj (2019). “A Primer on PAC-Bayesian Learning”. In: Proceedings of the French Mathematical
Society.

[23] W. Hamilton, R. Ying, and J. Leskovec (2017a). “Representation learning on graphs: Methods and
applications”. In: arXiv preprint arXiv:1709.05584.

[24] W. Hamilton, Z. Ying, and J. Leskovec (2017b). “Inductive representation learning on large graphs”.
In: NeurIPS.

[25] M. Hardt and B. Recht (2021). “Patterns, predictions, and actions: A story about machine learning”.
In: arXiv preprint arXiv:2102.05242.

[26] M. Hardt, B. Recht, and Y. Singer (2016). “Train faster, generalize better: Stability of stochastic gradient
descent”. In: ICML.

[27] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and J. Leskovec (2020). “Strategies for pre-
training graph neural networks”. In: ICLR.

[28] H. Hua, X. Li, D. Dou, C.-Z. Xu, and J. Luo (2021). “Noise stability regularization for improving BERT
fine-tuning”. In: ACL.

[29] P. Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. G. Wilson (2018). “Averaging weights leads
to wider optima and better generalization”. In: UAI.

[30] S. Jegelka (2022). “Theory of Graph Neural Networks: Representation and Learning”. In: arXiv preprint
arXiv:2204.07697.

[31] Y. Jiang, B. Neyshabur, H. Mobahi, D. Krishnan, and S. Bengio (2020). “Fantastic generalization
measures and where to find them”. In: ICLR.

[32] C. Jin, P. Netrapalli, R. Ge, S. M. Kakade, and M. I. Jordan (2019). “A short note on concentration
inequalities for random vectors with subgaussian norm”. In: arXiv preprint arXiv:1902.03736.

[33] W. Jin, R. Barzilay, and T. Jaakkola (2018). “Junction tree variational autoencoder for molecular graph
generation”. In: ICML.

[34] H. Ju, D. Li, and H. R. Zhang (2022). “Robust Fine-Tuning of Deep Neural Networks with Hessian-based
Generalization Guarantees”. In: ICML.

14

[35] T. N. Kipf and M. Welling (2017). “Semi-supervised classification with graph convolutional networks”.
In: ICLR.

[36] D. Li and H. Zhang (2021). “Improved Regularization and Robustness for Fine-tuning in Neural
Networks”. In: NeurIPS.

[37] R. Liao, R. Urtasun, and R. Zemel (2021). “A PAC-Bayesian Approach to Generalization Bounds for
Graph Neural Networks”. In: ICLR.

[38] P. M. Long and H. Sedghi (2020). “Generalization bounds for deep convolutional neural networks”.
In: ICLR.

[39] D.McAllester (2013). “A PAC-Bayesian tutorial with a dropout bound”. In: arXiv preprint arXiv:1307.2118.
[40] M. Mohri, A. Rostamizadeh, and A. Talwalkar (2018). Foundations of machine learning. MIT press.
[41] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe (2019). “Weisfeiler

and leman go neural: Higher-order graph neural networks”. In: AAAI.
[42] B. Neyshabur, S. Bhojanapalli, andN. Srebro (2018). “A pac-bayesian approach to spectrally-normalized

margin bounds for neural networks”. In: ICLR.
[43] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, and N. Srebro (2019). “Towards understanding the role

of over-parametrization in generalization of neural networks”. In: ICLR.
[44] R. Sato, M. Yamada, and H. Kashima (2019). “Approximation ratios of graph neural networks for

combinatorial problems”. In: NeurIPS.
[45] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini (2008). “The graph neural

network model”. In: IEEE transactions on neural networks.
[46] F. Scarselli, A. C. Tsoi, and M. Hagenbuchner (2018). “The vapnik–chervonenkis dimension of graph

and recursive neural networks”. In: Neural Networks.
[47] D. Selsam, M. Lamm, B. Bünz, P. Liang, L. de Moura, and D. L. Dill (2019). “Learning a SAT solver

from single-bit supervision”. In: ICLR.
[48] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio (2018). “Graph attention

networks”. In: ICLR.
[49] S. Verma and Z.-L. Zhang (2019). “Stability and generalization of graph convolutional neural networks”.

In: KDD.
[50] S. Vishwanathan, N. Schraudolph, R. Kondor, and K. Borgwardt (2010). “Graph kernels”. In: JMLR.
[51] C. Wei and T. Ma (2020). “Data-dependent sample complexity of deep neural networks via lipschitz

augmentation”. In: NeurIPS.
[52] Z. Wu, B. Ramsundar, E. N. Feinberg, J. Gomes, C. Geniesse, A. S. Pappu, K. Leswing, and V. Pande

(2018). “MoleculeNet: a benchmark for molecular machine learning”. In: Chemical science.
[53] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and Y. Philip (2020). “A comprehensive survey on graph

neural networks”. In: IEEE transactions on neural networks and learning systems.
[54] K. Xu, W. Hu, J. Leskovec, and S. Jegelka (2019). “How powerful are graph neural networks?” In:

ICLR.
[55] K. Xu, J. Li, M. Zhang, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka (2020). “What can neural networks

reason about?” In: ICLR.
[56] K. Xu, M. Zhang, J. Li, S. S. Du, K.-i. Kawarabayashi, and S. Jegelka (2021). “How neural networks

extrapolate: From feedforward to graph neural networks”. In: ICLR.
[57] P. Yanardag and S. Vishwanathan (2015). “Deep graph kernels”. In: KDD.
[58] G. Yehudai, E. Fetaya, E. Meirom, G. Chechik, and H. Maron (2021). “From local structures to size

generalization in graph neural networks”. In: ICML.
[59] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec (2018). “Hierarchical graph represen-

tation learning with differentiable pooling”. In: NeurIPS.

15

[60] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals (2017). “Understanding deep learning requires
rethinking generalization”. In: ICLR.

[61] H. Zhang, H. Yu, and A. Goel (2019). “Pruning based distance sketches with provable guarantees on
random graphs”. In: The World Wide Web Conference, pp. 2301–2311.

[62] M. Zhang, Z. Cui, M. Neumann, and Y. Chen (2018). “An end-to-end deep learning architecture for
graph classification”. In: AAAI.

Organization. In Appendix A, we state the complete proofs for our results. In Appendix B, we describe
extra experiment details to complement our results.

A Proofs
This section provides the complete proofs for all of our results in Section 3. First, we state several notations
and facts that will be needed in the proofs. Then we provide the proof of the Hessian-based generalization
bound for MPNN, which is stated in Lemma 4.1. After that, in Appendix A.2, we provide the proof of
Theorem 3.1, a key step of which is the proof of Lemma 4.3. Next, in Appendix A.3, we state the proof of the
lower bound. Lastly, in Appendix A.4, we will provide proof for the case of graph isomorphism networks.

First, we state several facts about graphs and provide a short proof of them.

Fact A.1. Let 𝐺 = (𝑉 , 𝐸) be an undirected graph. Let 𝑑𝐺 be the maximum degree of 𝐺 .

a) Let 𝐴 be the adjacency matrix of 𝐺 . Then, the adjacency matrix satisfies:
√
𝑑𝐺 ≤ ∥𝐴∥ ≤ 𝑑𝐺 .

b) The symmetric and degree-normalized adjacency matrix satisfies

𝐷−1/2𝐴𝐷−1/2

 ≤ 1.

Proof. Based on the definition of the spectral norm, we get

∥𝐴∥ = max
∥𝑥 ∥=1

𝑥⊤𝐴𝑥 = max
∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

𝑥𝑖𝑥 𝑗 ≤ max
∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

1
2 (𝑥

2
𝑖 + 𝑥2

𝑗) ≤ 𝑑𝐺

∑︁
𝑖∈𝑉

𝑥2
𝑖 = 𝑑𝐺 .

Assume that node 𝑖 has the maximum degree 𝑑𝐺 . Denote edges set 𝐸𝑖 = {(𝑖, 𝑖𝑘)}𝑑𝐺𝑘=1 ⊆ 𝐸. Let 𝑥𝑖 = 1√
2 ,

𝑥𝑖𝑘 = 1√
2𝑑𝐺

for all 𝑘 = 1, . . . , 𝑑𝐺 . The rest entries of 𝑥 are equal to zero. Thus, 𝑥 is a normalized vector. Next,
we have

∥𝐴∥ = max
∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

𝑥𝑖𝑥 𝑗 ≥ max
∥𝑥 ∥=1

2
∑︁

(𝑖, 𝑗) ∈𝐸𝑖

𝑥𝑖𝑥 𝑗 = 2𝑑𝐺 · 1
√

2
1

√
2𝑑𝐺

=
√︁
𝑑𝐺 .

An example in which ∥𝑃𝐺 ∥ gets close to
√
𝑑𝐺 is the star graph. An example in which ∥𝑃𝐺 ∥ gets close to 𝑑𝐺

is the complete graph.
Next, we focus on case b). From the definition of the spectral norm, we know

𝐷−1/2𝐴𝐷−1/2

 = max
∥𝑥 ∥=1

𝑥⊤
(
𝐷−1/2𝐴𝐷−1/2)𝑥 = max

∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

𝑥𝑖𝑥 𝑗√︁
𝑑𝑖𝑑 𝑗

≤ max
∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

𝑥2
𝑖

2𝑑𝑖
+

𝑥2
𝑗

2𝑑 𝑗

=
∑︁
𝑖∈𝑉

𝑥2
𝑖 = 1.

During the middle of the above step, we used the Cauchy-Schwartz inequality. The proof of this result is
now completed. □

Notations: For two matrices 𝑋 and 𝑌 that are both of dimension 𝑑1 by 𝑑2, the Hadamard product of 𝑋 and
𝑌 , denoted as 𝑋 ⊙ 𝑌 , is equal to the entrywise product of 𝑋 and 𝑌 .

16

A.1 Proof of our PAC-Bayesian bound (Lemma 4.1)

To be precise, we will restate the conditions required in Theorem 3.1 separately below. The conditions are
exactly the same as stated in Section 3.

Assumption A.2. Assume that all the activation functions 𝜙𝑖 (·), 𝜌𝑖 (·),𝜓𝑖 (·) for any 1 ≤ 𝑖 ≤ 𝑙 − 1 and the loss
function ℓ (𝑥,𝑦) over 𝑥 are twice-differentiable and 𝜅0-Lipschitz. Their first-order derivatives are 𝜅1-Lipschitz
and their second-order derivatives are 𝜅2-Lipschitz.

Based on the above assumption, we provide the precise statement for Taylor’s expansion, used in
equation (8).

Proposition A.3. In the setting of Theorem 3.1, suppose each parameter in layer 𝑖 is perturbed by an
independent noise drawn fromN(0, 𝜎2

𝑖). Let ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) be the perturbed loss function with noise perturbation
injection vector E on all parameters𝑾 and 𝑼 . There exist some fixed value 𝐶1 that do not grow with 𝑁 and
1/𝛿 such that �����ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) − ℓ (𝑓 (𝑋,𝐺), 𝑦) − 1

2

𝑙∑︁
𝑖=1

𝜎2
𝑖 Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

] ����� ≤ 𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖 .

Proof. By Taylor’s expansion, the following identity holds

ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) − ℓ (𝑓 (𝑋,𝐺), 𝑦) = E
E

[
E⊤∇ℓ (𝑓) + 1

2E
⊤H[ℓ (𝑓)]E + 𝑅(ℓ (𝑓), E)

]
.

where 𝑅(ℓ (𝑓), E) is the rest of the first order and the second order terms. Since each entry in E follows the
normal distribution, we have EE [E⊤∇ℓ (𝑓)] = 0. The Hessian term turns to

E⊤H[ℓ (𝑓)]E =

𝑙∑︁
𝑖=1

𝜎2
𝑖 Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

]
.

Since the readout layer is linear, by Proposition A.4, there exists a fixed constant 𝐶 that does not grow
with 𝑁 and 𝛿−1 such that |𝑅(ℓ (𝑓), E)| ≤ 𝐶 ∥E∥3. Based on Jin et al. [32, Lemma 2], for any 𝑥 drawn from
a normal distribution N(0, 𝜎2), we have E

[
𝑥3] ≤ 6𝜎3. Hence, we get E [𝑅(ℓ (𝑓), E)] ≤ 𝐶1

∑𝑙
𝑖=1 𝜎

3
𝑖 , where

𝐶1 = O(ℎ2𝐶) is a fixed constant. Thus, we have finished the proof. □

Next, we state a Lipschitz-continuity upper bound of the network output at each layer. This will be
needed in the 𝜖-covering argument later in the proof of Theorem 3.1. To simplify the notation, we will
abbreviate explicit constants that do not grow with 𝑁 and 1/𝛿 in the notation ≲; more specifically, we
use 𝐴(𝑛) ≲ 𝐵(𝑛) to indicate that there exists a function 𝑐 that does not depend on 𝑁 and 1/𝛿 such that
𝐴(𝑛) ≤ 𝑐 · 𝐵(𝑛) for large enough values of 𝑛.

Proposition A.4. In the setting of Theorem 3.1, for any 𝑗 = 1, . . . , 𝑙 − 1, the change in the Hessian of output of
the 𝑗 layer network 𝐻 (𝑗) with respect to𝑊𝑖 and𝑈𝑖 under perturbation on𝑊 and𝑈 can be bounded as follows:

H(𝑖)

𝑾 [𝐻̃ (𝑗)] − H(𝑖)
𝑾 [𝐻 (𝑗)]

𝐹
≲

𝑗∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) . (12)

H(𝑖)
𝑼 [𝐻̃ (𝑗)] − H(𝑖)

𝑼 [𝐻 (𝑗)]

𝐹
≲

𝑗∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) . (13)

Above, the notation H(𝑖)
𝑾 [𝐻̃ (𝑗)] is the perturbation of the Hessian matrix of 𝐻 (𝑗) by Δ𝑾 and Δ𝑼 , specific to

the variables of𝑾 ; likewise, H(𝑖)
𝑼 [𝐻̃ (𝑗)] is the perturbation of the Hessian matrix specific to the variables of 𝑼 .

17

The proof of Proposition A.4 will be deferred until Appendix A.1.1. Based on Propositions A.3 and A.4,
now we are ready to present the proof of Lemma 4.1.

Proof of Lemma 4.1. First, we separate the gap of 𝐿(𝑓) and 1
𝛽
𝐿̂(𝑓) into three parts:

𝐿(𝑓) − 1
𝛽
𝐿̂(𝑓) = E

(𝑋,𝐺,𝑦)∼D
[ℓ (𝑓 (𝑋,𝐺), 𝑦)] − E

(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]
︸ ︷︷ ︸

𝐸1

+ E
(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]

− 1
𝛽

(1
𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖), 𝑦𝑖)
)
+ 1
𝛽

(1
𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖), 𝑦𝑖)
)
− 1
𝛽

(1
𝑁

𝑁∑︁
𝑖=1

ℓ (𝑓 (𝑋𝑖 ,𝐺𝑖), 𝑦𝑖)
)

︸ ︷︷ ︸
𝐸2

.

for any 𝛽 ∈ (0, 1). Above, ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) is the perturbed loss from ℓ (𝑓 (𝑋,𝐺), 𝑦) with noise injections E
added to all the parameters in𝑾 and 𝑼 . By Taylor’s expansion from Proposition A.3, we can bound the
difference between ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) and ℓ (𝑓 (𝑋,𝐺) with the trace of the Hessian. Therefore

𝐿(𝑓) − 1
𝛽
𝐿̂(𝑓) ≤ − E

(𝑋,𝐺,𝑦)∼D

[
1
2

𝑙∑︁
𝑖=1

𝜎2
𝑖 Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

]]
+

𝑙∑︁
𝑖=1

𝐶1𝜎
3
𝑖 (by Prop. A.3 for 𝐸1)

+
(

E
(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]
− 1
𝛽

(1
𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖), 𝑦𝑖)
))

+ 1
2𝛽

𝑙∑︁
𝑖=1

𝜎2
𝑖

(1
𝑁

𝑁∑︁
𝑗=1

Tr
[
H(𝑖) [ℓ (𝑓 (𝑋 𝑗 ,𝐺 𝑗), 𝑦 𝑗)]

])
+ 1
𝛽

𝑙∑︁
𝑖=1

𝐶1𝜎
3
𝑖 . (by Prop. A.3 for 𝐸2)

By rearranging the above equation, we get the following:

𝐿(𝑓) − 1
𝛽
𝐿̂(𝑓) ≤ 1

2

𝑙∑︁
𝑖=1

𝜎2
𝑖

(
1
𝑁

𝑁∑︁
𝑗=1

Tr
[
H(𝑖) [ℓ (𝑓 (𝑋 𝑗 ,𝐺 𝑗), 𝑦 𝑗)]

]
− E

(𝑋,𝐺,𝑦)∼D

[
Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

]]
︸ ︷︷ ︸

𝐸3

)

+ 1
2

(1
𝛽
− 1

) 𝑙∑︁
𝑖=1

𝜎2
𝑖

𝑁

𝑁∑︁
𝑗=1

Tr
[
H(𝑖) [ℓ (𝑓 (𝑋 𝑗 ,𝐺 𝑗), 𝑦 𝑗)]

]
︸ ︷︷ ︸

𝐸4

+
(
1 + 1

𝛽

)
𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖 + E

(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]
− 1
𝛽𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖), 𝑦𝑖)︸ ︷︷ ︸
𝐸5

.

Based on Proposition A.4, the Hessian operator H(𝑖) is Lipschitz-continuous for some parameter that does
not depend on 𝑁 and 1/𝛿 , for any 𝑖 = 1, 2 . . . , 𝑙 . Therefore, from Ju et al. [34, Lemma 2.4], there exist some
fixed values 𝐶2, 𝐶3 that do not grow with 𝑁 and 1/𝛿 , such that with probability at least 1 − 𝛿 over the
randomness of the training set. Therefore, the matrix inside the trace of 𝐸3 satisfies

 1

𝑁

𝑁∑︁
𝑗=1

H(𝑖) [ℓ (𝑓 (𝑋 𝑗 ,𝐺 𝑗), 𝑦 𝑗)] − E
(𝑋,𝐺,𝑦)∼D

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

]

𝐹

≤
𝐶2

√︁
log(𝐶3𝑁 /𝛿)
√
𝑁

, (14)

18

for any 𝑖 = 1, . . . , 𝑙 . Thus, by the Cauchy-Schwartz inequality, 𝐸3 is less than
√

2ℎ2 times the RHS of equation
(14). Suppose the loss function ℓ (𝑓 (𝑋,𝐺), 𝑦) lies in a bounded range [0, 𝐵] given any (𝑋,𝐺,𝑦) ∼ D. By the
PAC-Bayes bound of McAllester [39, Theorem 2] (see also Guedj [22]), we choose 𝑼 as a prior distribution
and𝑾 + 𝑼 as a posterior distribution. For any 𝛽 ∈ (0, 1) and 𝛿 ∈ [0, 1), with probability at least 1 − 𝛿 , 𝐸5
satisfies:

E
(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]
− 1
𝛽𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖), 𝑦𝑖) ≤
𝐵

2𝛽 (1 − 𝛽)𝑁

(𝑙∑︁
𝑖=1

𝑊 (𝑖)

2
𝐹
+

𝑈 (𝑖)

2
𝐹

2𝜎2
𝑖

+ log 1
𝛿

)
≤ 𝐵

2𝛽 (1 − 𝛽)𝑁

(𝑙∑︁
𝑖=1

𝑠2
𝑖 𝑟

2
𝑖

𝜎2
𝑖

+ log 1
𝛿

)
. (15)

The above is because𝑾 and 𝑼 are inside the hypothesis setH . For any 𝑖 = 1, . . . , 𝑙 , let

𝛼𝑖 = max
(𝑋,𝐺,𝑦)∼D

Tr
[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

]
.

Lastly, we use 𝜎2
𝑖 𝛼𝑖 above to upper bound 𝐸4. Combined with equations (14) and (15), with probability at

least 1 − 2𝛿 , we get

𝐿(𝑓) − 1
𝛽
𝐿̂(𝑓) ≤

𝐶2
√︁

2ℎ2 log(𝐶3𝑁 /𝛿)
√
𝑁

𝑙∑︁
𝑖=1

𝜎2
𝑖 +

(
1 + 1

𝛽

)
𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖

+ 1
2

(1
𝛽
− 1

) 𝑙∑︁
𝑖=1

𝛼𝑖𝜎
2
𝑖 +

𝐵

2𝛽 (1 − 𝛽)𝑁

(
𝑙∑︁

𝑖=1

𝑠2
𝑖 𝑟

2
𝑖

𝜎2
𝑖

+ log 1
𝛿

)
.

Next, we will select 𝜎𝑖 to minimize the last line above. One can verify that this is achieved when

𝜎2
𝑖 =

𝑠𝑖𝑟𝑖

1 − 𝛽

√︂
𝐵

𝛼𝑖𝑁
, for every 𝑖 = 1, 2, . . . , 𝑙 .

With this setting of the noise variance, the gap between 𝐿(𝑓) and 𝐿̂(𝑓)/𝛽 becomes:

𝐿(𝑓) − 1
𝛽
𝐿̂(𝑓) ≤ 1

𝛽

𝑙∑︁
𝑖=1

√︄
𝐵𝛼𝑖𝑠

2
𝑖
𝑟 2
𝑖

𝑁
+
𝐶2

√︁
2ℎ2 log(𝐶3𝑁 /𝛿)

√
𝑁

𝐿∑︁
𝑖=1

𝜎2
𝑖 +

(
1 + 1

𝛽

)
𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖 +

𝐶

2𝛽 (1 − 𝛽)𝑁 log 1
𝛿
.

Let 𝛽 be a fixed value close to 1 and independent of 𝑁 and 𝛿−1; let 𝜖 = (1 − 𝛽)/𝛽 . We get

𝐿(𝑓) ≤ (1 + 𝜖)𝐿̂(𝑓) + (1 + 𝜖)
𝑙∑︁

𝑖=1

√︄
𝐵𝛼𝑖𝑟

2
𝑖
𝑠2
𝑖

𝑁
+ 𝜉, where

𝜉 =
𝐶2

√︁
2ℎ2 log(𝐶3𝑁 /𝛿)

√
𝑁

𝐿∑︁
𝑖=1

𝜎2
𝑖 +

(
1 + 1

𝛽

)
𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖 +

𝐶

2𝛽 (1 − 𝛽)𝑁 log 1
𝛿
.

Notice that 𝜉 is of order O(𝑁 −3/4 + log(𝛿−1)𝑁 −1) ≤ O(log(𝛿−1)/𝑁 3/4). Therefore, we have finished the
proof of equation (5). □

19

A.1.1 Proof of Proposition A.4

For any 𝑗 = 1, 2, . . . , 𝑙 , let 𝐻̃ (𝑗) be the perturbed network output after layer 𝑗 , with perturbations given by
Δ𝑾 and Δ𝑼 . We show the following Lipschitz-continuity property for 𝐻 (𝑗) .

Claim A.5. Suppose that Assumption A.2 holds. For any 𝑗 = 1, . . . , 𝑙 − 1, the change in the output of the 𝑗
layer network 𝐻 (𝑗) with perturbation added to𝑾 and 𝑼 can be bounded as follows:

𝐻̃ (𝑗) − 𝐻 (𝑗)

𝐹
≲

𝑗∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) . (16)

Proof. We will prove using induction with respect to 𝑗 . If 𝑗 = 1, we have

𝜙1
(
𝑋

(
𝑈 (1) + Δ𝑈 (1)) + 𝜌1

(
𝑃
𝐺
𝜓1

(
𝑋

)) (
𝑊 (1) + Δ𝑊 (1))) − 𝜙1

(
𝑋𝑈 (1) + 𝜌1

(
𝑃
𝐺
𝜓1

(
𝑋

))
𝑊 (1)

)

𝐹

≤𝜅0

𝑋Δ𝑈 (1) + 𝜌1
(
𝑃
𝐺
𝜓1

(
𝑋

))
Δ𝑊 (1)

𝐹
≲

Δ𝑈 (1)

 +

Δ𝑊 (1)

 .
Hence, we know that equation (16) will be correct when 𝑗 = 1. Assuming that equation (16) is correct for
any 𝑗 ≥ 1, the perturbation of layer 𝑗 + 1’s network output 𝐻 (𝑗+1) is less than

𝐻̃ (𝑗+1) − 𝐻 (𝑗+1)

𝐹

≤𝜅0

𝑋Δ𝑈 (𝑗+1) + 𝜌 𝑗+1
(
𝑃
𝐺
𝜓 𝑗+1

(
𝐻̃ (𝑗))) (𝑊 (𝑗+1) + Δ𝑊 (𝑗+1)) − 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1

(
𝐻 (𝑗)))𝑊 (𝑗+1)

𝐹

≲

Δ𝑈 (𝑗+1)

 +

Δ𝑊 (𝑗+1)

 +

𝐻̃ (𝑗) − 𝐻 (𝑗)

𝐹
.

Thus, we have finished the proof of the induction step. □

Next, for any 𝑖 and 𝑗 , let 𝜕𝐻̃ (𝑗)

𝜕𝑊 (𝑖) be the perturbation of the partial derivative of 𝐻 (𝑗) with perturbations
given by Δ𝑾 and Δ𝑼 .

Claim A.6. Suppose that Assumption A.2 holds. For any 𝑗 = 1, . . . , 𝑙 − 1, the change in the Jacobian of the
𝑗-th layer’s output 𝐻 (𝑗) with respect to𝑊 (𝑖) and𝑈 (𝑖) satisfies:

 𝜕𝐻̃ (𝑗)

𝜕𝑊 (𝑖) −
𝜕𝐻 (𝑗)

𝜕𝑊 (𝑖)

𝐹

≲

𝑗∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) . (17)

 𝜕𝐻̃ (𝑗)

𝜕𝑈 (𝑖) − 𝜕𝐻 (𝑗)

𝜕𝑈 (𝑖)

𝐹

≲

𝑗∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) . (18)

Proof. We will consider a fixed 𝑖 = 1, . . . , 𝑙 − 1 and take induction over 𝑗 = 𝑖, . . . , 𝑙 − 1. We focus on the
proof of equation (17), while the proof of equation (18) will be similar. To simplify the derivation, we use
two notations for brevity. Let

𝐹 𝑗 = 𝑃
𝐺
𝜓 𝑗

(
𝐻 (𝑗−1))𝑊 (𝑗) and 𝐸 𝑗 = 𝑋𝑈 (𝑗) + 𝜌 𝑗

(
𝐹 𝑗

)
.

First, we consider the base case when 𝑗 = 𝑖 . By the chain rule, we have:

 𝜕𝐻̃ (𝑖)

𝜕𝑊 (𝑖) −
𝜕𝐻 (𝑖)

𝜕𝑊 (𝑖)

𝐹

=

𝜙 ′
𝑖

(
𝐸𝑖

)
⊙ 𝜕𝐸𝑖

𝜕𝑊 (𝑖) − 𝜙 ′
𝑖

(
𝐸𝑖

)
⊙ 𝜕𝐸𝑖

𝜕𝑊 (𝑖)

𝐹

≲

𝜙 ′

𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)

𝐹
+

 𝜕𝐸𝑖

𝜕𝑊 (𝑖) −
𝜕𝐸𝑖

𝜕𝑊 (𝑖)

𝐹

.

20

From Claim A.5, we know

𝜙 ′
𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)

𝐹
≤ 𝜅1

𝐸𝑖 − 𝐸𝑖

𝐹
≲

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

 .
By the chain rule again, we get:

 𝜕𝐸𝑖

𝜕𝑊 (𝑖) −
𝜕𝐸𝑖

𝜕𝑊 (𝑖)

𝐹

≲

𝜌 ′

𝑖

(
𝐹𝑖

)
− 𝜌 ′

𝑖

(
𝐹𝑖

)

𝐹
+

 𝜕𝐹𝑖

𝜕𝑊 (𝑖) −
𝜕𝐹𝑖

𝜕𝑊 (𝑖)

𝐹

≲

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

.

(by Claim A.5 again)

Hence, we know that equation (17) will be correct when 𝑗 = 𝑖 . Assuming that equation (17) will be correct
for any 𝑗 up to 𝑗 ≥ 𝑖 , we have

 𝜕𝐻̃ (𝑗+1)

𝜕𝑊 (𝑖) − 𝜕𝐻 (𝑗+1)

𝜕𝑊 (𝑖)

𝐹

≲

𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)
− 𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)

𝐹
+

 𝜕𝐸 𝑗+1

𝜕𝑊 (𝑖) −
𝜕𝐸 𝑗+1

𝜕𝑊 (𝑖)

𝐹

≲

𝑗+1∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) +

𝜌 ′
𝑗+1

(
𝐹 𝑗+1

)
− 𝜌 ′

𝑗+1
(
𝐹 𝑗+1

)

𝐹
+

 𝜕𝐹 𝑗+1

𝜕𝑊 (𝑖) −
𝜕𝐹 𝑗+1

𝑊 (𝑖)

𝐹

≲

𝑗+1∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) +

𝜓 ′
𝑗+1

(
𝐻̃ (𝑗)) −𝜓 ′

𝑗+1
(
𝐻 (𝑗))

𝐹
+

 𝜕𝐻̃ (𝑗)

𝜕𝑊 (𝑖) −
𝜕𝐻 (𝑗)

𝜕𝑊 (𝑖)

𝐹

≲

𝑗+1∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) . (by Claim A.5 and the induction step)

The above steps all use Claim A.5. The last step additionally uses the induction hypothesis. From repeatedly
applying the above beginning with 𝑗 = 𝑖 along with the base case of equation (17), we conclude that
equation (17) holds.

Next, we consider the base case for equation (18). For the base case 𝑗 = 𝑖 , from the chain rule, we get:

 𝜕𝐻̃ (𝑖)

𝜕𝑈 (𝑖) −
𝜕𝐻 (𝑖)

𝜕𝑈 (𝑖)

𝐹

≲

𝜙 ′

𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)

𝐹
+

 𝜕𝐸𝑖

𝜕𝑈 (𝑖) −
𝜕𝐸𝑖

𝜕𝑈 (𝑖)

𝐹

≲

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

. (by Claim A.5)

Hence, we know that equation (18) will be correct when 𝑗 = 𝑖 . Assuming that equation (18) will be correct
for any 𝑗 up to 𝑗 ≥ 𝑖 , we have

 𝜕𝐻̃ (𝑗+1)

𝜕𝑈 (𝑖) − 𝜕𝐻 (𝑗+1)

𝜕𝑈 (𝑖)

𝐹

≲

𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)
− 𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)

𝐹
+

 𝜕𝐸 𝑗+1

𝜕𝑈 (𝑖) −
𝜕𝐸 𝑗+1

𝜕𝑈 (𝑖)

𝐹

≲

𝑗+1∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) +

𝜌 ′
𝑗+1

(
𝐹 𝑗+1

)
− 𝜌 ′

𝑗+1
(
𝐹 𝑗+1

)

𝐹
+

 𝜕𝐹 𝑗+1

𝜕𝑈 (𝑖) −
𝜕𝐹 𝑗+1

𝜕𝑈 (𝑖)

𝐹

≲

𝑗+1∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) +

𝜓 ′
𝑗+1

(
𝐻̃ (𝑗)) −𝜓 ′

𝑗+1
(
𝐻 (𝑗))

𝐹
+

 𝜕𝐻̃ (𝑗)

𝜕𝑈 (𝑖) − 𝜕𝐻 (𝑗)

𝜕𝑈 (𝑖)

𝐹

≲

𝑗+1∑︁
𝑡=1

(

Δ𝑈 (𝑡)

 +

Δ𝑊 (𝑡)

) . (by Claim A.5 and the induction step)

The second and third steps are based on Claim A.5. From repeatedly applying the above beginning with
𝑗 = 𝑖 along with the base case of equation (18), we conclude that equation (18) holds. The proof of claim
A.6 is complete. □

21

Proof of Proposition A.4. We will consider a fixed 𝑖 = 1, . . . , 𝑙 − 1 and take induction over 𝑗 = 𝑖, . . . , 𝑙 − 1.
We focus on the proof of equation (12), while the proof of equation (13) will be similar. To simplify the
derivation, we use two notations for brevity. Let

𝐹 𝑗 = 𝑃
𝐺
𝜓 𝑗

(
𝐻 (𝑗−1))𝑊 (𝑗) and 𝐸 𝑗 = 𝑋𝑈 (𝑗) + 𝜌 𝑗

(
𝐹 𝑗

)
.

First, we consider the base case when 𝑗 = 𝑖 . By the chain rule, we have: We use the chain rule to get:

𝜕2𝐻 (𝑖)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2 = 𝜙 ′′
𝑖 (𝐸𝑖) ⊙

𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

+ 𝜙 ′
𝑖 (𝐸𝑖) ⊙ 𝜌 ′′

𝑖 (𝐹𝑖) ⊙
𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

.

Hence, the Frobenius norm of the Hessian of 𝐻 (𝑖) with respect to𝑊𝑖 under perturbation on𝑊 and𝑈 turns
to

H(𝑖)

𝑾 [𝐻̃ (𝑖)] − H(𝑖)
𝑾 [𝐻 (𝑖)]

𝐹
≲

𝜙 ′′
𝑖

(
𝐸𝑖

)
− 𝜙 ′′

𝑖

(
𝐸𝑖

)

𝐹
+

 𝜕𝐸𝑖

𝜕𝑊 (𝑖) −
𝜕𝐸𝑖

𝜕𝑊 (𝑖)

𝐹

+

𝜙 ′

𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)

𝐹

+

𝜌 ′′

𝑖

(
𝐹𝑖

)
− 𝜌 ′′

𝑖

(
𝐹𝑖

)

𝐹
+

 𝜕𝐹𝑖

𝜕𝑊 (𝑖) −
𝜕𝐹𝑖

𝜕𝑊 (𝑖)

𝐹

.

From Claim A.5, we know

𝜙 ′′
𝑖

(
𝐸𝑖

)
− 𝜙 ′′

𝑖

(
𝐸𝑖

)

𝐹
≤ 𝜅2

𝐸𝑖 − 𝐸𝑖

𝐹
≲

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

 ,

𝜙 ′
𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)

𝐹
≤ 𝜅1

𝐸𝑖 − 𝐸𝑖

𝐹
≲

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

 ,

𝜌 ′′
𝑖

(
𝐹𝑖

)
− 𝜌 ′′

𝑖

(
𝐹𝑖

)

𝐹
≤ 𝜅2

𝐹𝑖 − 𝐹𝑖

𝐹
≲

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

 .
From Claim A.6, we have

 𝜕𝐸𝑖

𝜕𝑊 (𝑖) −
𝜕𝐸𝑖

𝜕𝑊 (𝑖)

𝐹

≲

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

 ,

 𝜕𝐹𝑖

𝜕𝑊 (𝑖) −
𝜕𝐹𝑖

𝜕𝑊 (𝑖)

𝐹

≲

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

 .

Hence, we know that equation (12) will be correct when 𝑗 = 𝑖 . Assuming that equation (12) will be correct
for any 𝑗 up to 𝑗 ≥ 𝑖 , we can get the following steps, by taking another derivative of the first-order derivative,
we can get the following steps:

𝜕2𝐻 (𝑗+1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2 =𝜙 ′′
𝑗+1 (𝐸 𝑗+1) ⊙

𝜕𝐸 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙
𝜕𝐸 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

+ 𝜙 ′
𝑗+1 (𝐸 𝑗+1) ⊙ 𝜌 ′′

𝑗+1 (𝐹 𝑗+1) ⊙
𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙
𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

+ 𝜙 ′
𝑗+1 (𝐸 𝑗+1) ⊙ 𝜌 ′

𝑗+1 (𝐹 𝑗+1) ⊙ 𝑃
𝐺

(
𝜓 ′′
𝑗+1 (𝐻 (𝑗)) ⊙ 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

+𝜓 ′
𝑗+1 (𝐻 (𝑗)) ⊙ 𝜕2𝐻 (𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

)
𝑊 (𝑗+1) .

22

Thus, the Frobenius norm of the Hessian of 𝐻 (𝑗+1) with respect to𝑊 (𝑖) satisfies:

H(𝑖)
𝑾 [𝐻̃ (𝑗+1)] − H(𝑖)

𝑾 [𝐻 (𝑗+1)]

𝐹
≲

𝜙 ′′
𝑗+1

(
𝐸 𝑗+1

)
− 𝜙 ′′

𝑗+1
(
𝐸 𝑗+1

)

𝐹︸ ︷︷ ︸

𝐴1

+

 𝜕𝐸 𝑗+1

𝜕𝑊 (𝑖) −
𝜕𝐸 𝑗+1

𝜕𝑊 (𝑖)

𝐹︸ ︷︷ ︸

𝐵1

+

𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)
− 𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)

𝐹︸ ︷︷ ︸

𝐴2

+

𝜌 ′′

𝑗+1
(
𝐹 𝑗+1

)
− 𝜌 ′′

𝑗+1
(
𝐹 𝑗+1

)

𝐹︸ ︷︷ ︸

𝐴3

+

 𝜕𝐹 𝑗+1

𝜕𝑊 (𝑖) −
𝜕𝐹 𝑗+1

𝜕𝑊 (𝑖)

𝐹︸ ︷︷ ︸

𝐵2

+

𝜌 ′

𝑗+1
(
𝐹 𝑗+1

)
− 𝜌 ′

𝑗+1
(
𝐹 𝑗+1

)

𝐹︸ ︷︷ ︸

𝐴4

+

𝜓 ′′

𝑗+1
(
𝐻̃ (𝑗)) −𝜓 ′′

𝑗+1
(
𝐻 (𝑗))

𝐹︸ ︷︷ ︸
𝐴5

+

 𝜕𝐻̃ (𝑗)

𝜕𝑊 (𝑖) −
𝜕𝐻 (𝑗)

𝜕𝑊 (𝑖)

𝐹︸ ︷︷ ︸

𝐵3

+

𝜓 ′

𝑗+1
(
𝐻̃ (𝑗)) −𝜓 ′

𝑗+1
(
𝐻 (𝑗))

𝐹︸ ︷︷ ︸
𝐴6

+

H(𝑖)

𝑾 [𝐻̃ (𝑗)] − H(𝑖)
𝑾 [𝐻 (𝑗)]

𝐹︸ ︷︷ ︸

𝐶1

.

Similarly, by Claim A.5, we get

𝐴𝑖 ≲

𝑗+1∑︁
𝑡=1

(

Δ𝑊 (𝑡)

 +

Δ𝑈 (𝑡)

), for 1 ≤ 𝑖 ≤ 6.

By Claim A.6, we get

𝐵𝑖 ≲

𝑗+1∑︁
𝑡=1

(

Δ𝑊 (𝑡)

 +

Δ𝑈 (𝑡)

), for 1 ≤ 𝑖 ≤ 3.

By the induction hypothesis, 𝐶1 is also less than the above quantity. From repeatedly applying the above
beginning with 𝑗 = 𝑖 along with the base case of equation (12), we conclude that equation (12) holds.

Next, we consider the base case for equation (13). For the base case 𝑗 = 𝑖 , from the chain rule, we get:

H(𝑖)
𝑼 [𝐻̃ (𝑖)] − H(𝑖)

𝑼 [𝐻 (𝑖)]

𝐹
≲

𝜙 ′′
𝑖

(
𝐸𝑖

)
− 𝜙 ′′

𝑖

(
𝐸𝑖

)

𝐹
+

 𝜕𝐸𝑖

𝜕𝑈 (𝑖) −
𝜕𝐸𝑖

𝜕𝑈 (𝑖)

𝐹

≲𝜅2

𝐸𝑖 − 𝐸𝑖

𝐹
+

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

 (by Claim A.6)

≲

Δ𝑊 (𝑖)

 +

Δ𝑈 (𝑖)

. (by Claim A.5)

Hence, we know that equation (13) will be correct when 𝑗 = 𝑖 . Assuming that equation (13) will be correct
for any 𝑗 up to 𝑗 ≥ 𝑖 , we obtain the induction step similar to the proof of equation (12), by Claim A.5, Claim
A.6, and the induction hypothesis, we conclude that equation (13) holds. □

A.2 Proof for message passing graph neural networks

Next, we present proof for message-passing graph neural networks. First, in Appendix A.2.1, we derive
the trace bound, which separates the trace of the Hessian matrix into each entry of the weight matrices.
Then in Appendix A.2.2 and A.2.3, we provide bounds on the first-order and second-order derivatives of
the Hessian matrix. Last, in Appendix A.2.4, building on these results, we finish the proof of Theorem 3.1.

A.2.1 Proof of Lemma 4.3

Proof of Lemma 4.3. Notice that 𝑓 (𝑋,𝐺) = 𝐻 (𝑙) . Recall that in each layer for 1 ≤ 𝑖 ≤ 𝑙 − 1, there are two
weight matrices, a 𝑑𝑖−1 by 𝑑𝑖 matrix denoted as𝑊 (𝑖) , and a 𝑑0 by𝑈 (𝑖) matrix denoted as𝑈 (𝑖) . To deal with

23

the trace of the Hessian H(𝑖) , we first notice that there are two parts in the trace:���Tr
[
H(𝑖) [ℓ (𝐻 (𝑙) , 𝑦)]

] ��� ≤ �����𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

𝜕2ℓ (𝐻 (𝑙) , 𝑦)
𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

�����︸ ︷︷ ︸
𝑇1

+
����� 𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

𝜕2ℓ (𝐻 (𝑙) , 𝑦)
𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2

�����︸ ︷︷ ︸
𝑇2

.

We can inspect 𝑇1 and 𝑇2 in the above step separately. First, we expand out the second-order derivatives in
𝑇1. This will involve two terms by the chain rule.

𝑇1 =

�����𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

〈
𝜕ℓ (𝐻 (𝑙) , 𝑦)

𝜕𝐻 (𝑙) ,
𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

〉����� +
�����𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

〈
𝜕2ℓ (𝐻 (𝑙) , 𝑦)
𝜕
(
𝐻 (𝑙))2

𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞

,
𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞

〉�����
≤

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕ℓ (𝐻 (𝑙) , 𝑦)
𝜕𝐻 (𝑙)

 𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

 + 𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2ℓ (𝐻 (𝑙) , 𝑦)
𝜕
(
𝐻 (𝑙))2

 𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

≤𝜅0
√
𝑘

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

 + 𝜅1𝑘
𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

. (19)

The last step is because ℓ (·) is 𝜅0-Lipschitz continuous and ℓ ′(·) is 𝜅1-Lipschitz continuous, under Assump-
tion A.2. Thus, the Euclidean norm of 𝜕ℓ (𝐻 (𝑙) ,𝑦)

𝜕𝐻 (𝑙) is at most 𝜅0
√
𝑘 , since 𝐻 (𝑙) is a 𝑘-dimensional vector. Recall

from step (2) that 𝐻 (𝑙) = 1
𝑛
1⊤𝑛𝐻 (𝑙−1)𝑊 (𝑙) . Hence, we have

 𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞

 =

1
𝑛
1⊤𝑛

𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞

𝑊 (𝑙)

≤

1
𝑛
1⊤𝑛

 𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞

𝑊 (𝑙)

 ≤ 1
√
𝑛

 𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞

𝑊 (𝑙)

 . (20)

In a similar vein, the Euclidean norm of 𝜕2ℓ (𝐻 (𝑙) ,𝑦)
𝜕 (𝐻 (𝑙))2 is at most 𝜅1𝑘 , since the second-order derivatives become

a 𝑘 by 𝑘 matrix. Then, we get

 𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

 =

1
𝑛
1⊤𝑛

𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2𝑊
(𝑙)

≤

1
𝑛
1⊤𝑛

 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2𝑊
(𝑙)

 ≤ 1
√
𝑛

 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝑊 (𝑙)

 . (21)

After substituting equations (20) and (21) into equation (19), we get:

𝑇1 ≤ 𝜅0
√
𝑘

√
𝑛

𝑊 (𝑙)

 𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

 + 𝜅1𝑘

𝑛

𝑊 (𝑙)

2 𝑑𝑖−1∑︁

𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

.

≤ 𝜅0
√
𝑘

√
𝑛

𝑊 (𝑙)

 𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

+ 𝜅1𝑘

𝑛

𝑊 (𝑙)

2 𝑑𝑖−1∑︁

𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

.

The proof for the case of 𝑇2 concerning𝑈 (𝑖) follows the same steps as above. Without belaboring all the
details, one can get that

𝑇2 ≤ 𝜅0
√
𝑘

√
𝑛

𝑊 (𝑙)

 𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2

𝐹

+ 𝜅1𝑘

𝑛

𝑊 (𝑙)

2 𝑑0∑︁

𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕𝐻 (𝑙−1)

𝜕𝑈
(𝑖)
𝑝,𝑞

2

𝐹

. (22)

24

This completes the proof of Lemma 4.3. □

A.2.2 Dealing with first-order derivatives

Based on Lemma 4.3, the analysis involves two parts, one on the first-order derivatives of 𝐻 (𝑗) for all layers
𝑗 , and the other on the second-order derivatives of 𝐻 (𝑗) for all layers 𝑗 .

Proposition A.7. In the setting of Theorem 3.1, the first-order derivative of 𝐻 (𝑗) with respect to𝑊 (𝑖) and
𝑈 (𝑖) satisfies the following, for any 𝑖 = 1, . . . , 𝑙 − 1 and 𝑗 ≥ 𝑖 :

 𝜕𝐻 (𝑗)

𝜕𝑊 (𝑖)

𝐹

≤𝜅
3(𝑗−𝑖+1)
0

√︁
𝑑𝑖

𝑃
𝐺

𝑗−𝑖+1

𝐻 (𝑖−1)

𝐹

𝑗∏
𝑡=𝑖+1

𝑊 (𝑡)

 , (23)

 𝜕𝐻 (𝑗)

𝜕𝑈 (𝑖)

𝐹

≤𝜅
3(𝑗−𝑖)+1
0

√︁
𝑑𝑖

𝑃
𝐺

𝑗−𝑖+1 ∥𝑋 ∥𝐹
𝑗∏

𝑡=𝑖+1

𝑊 (𝑡)

 . (24)

Proof. We will consider a fixed 𝑖 = 1, . . . , 𝑙 − 1 and take induction over 𝑗 = 𝑖, . . . , 𝑙 − 1. We focus on the proof
of equation (23), while the proof of equation (24) will be similar. First, we consider the base case when
𝑗 = 𝑖 . Let𝑊 (𝑖)

𝑝,𝑞 be the (𝑝, 𝑞)-th entry of𝑊 (𝑖) , for any valid indices 𝑝 and 𝑞. Recall that 𝜙𝑖 (·) is 𝜅0-Lipschitz
continuous from Assumption A.2, for any 𝑖 = 1, . . . , 𝑙 − 1. Therefore,

𝜙 ′

𝑖 (𝑥)

∞ ≤ 𝜅0,

𝜓 ′
𝑖 (𝑥)

∞ ≤ 𝜅0, and

𝜌 ′
𝑖 (𝑥)

∞ ≤ 𝜅0. (25)

For each (𝑝, 𝑞)-entry of𝑊 (𝑖) , by the chain rule, we have:

 𝜕𝐻 (𝑖)

𝜕𝑊
(𝑖)
𝑝,𝑞

𝐹

=

𝜙 ′
𝑖

(
𝑋𝑈 (𝑖) + 𝜌𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖))) ⊙ 𝜕

(
𝑋𝑈 (𝑖) + 𝜌𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖)))

𝜕𝑊
(𝑖)
𝑝,𝑞

𝐹

(26)

≤ 𝜅0

 𝜕𝜌𝑖 (𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖))
𝜕𝑊

(𝑖)
𝑝,𝑞

𝐹

(by equation (25))

= 𝜅0

𝜌 ′
𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖)) ⊙ 𝜕

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖))

𝑊
(𝑖)
𝑝,𝑞

𝐹

≤ 𝜅2
0

 𝜕 (𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖))

𝜕𝑊
(𝑖)
𝑝,𝑞

𝐹

. (again by equation (25))

Notice that only the 𝑞-th column of the derivative 𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖) is nonzero, which is equal to the 𝑝’th

column of 𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1)). Thus, the Jacobian of 𝐻 (𝑖) over𝑊 (𝑖) satisfies:

 𝜕𝐻 (𝑖)

𝜕𝑊 (𝑖)

𝐹

=

√√√√𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕𝐻 (𝑖)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

≤ 𝜅2
0

√√√√𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕 (𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖))

𝑊
(𝑖)
𝑝,𝑞

2

𝐹

= 𝜅2
0
√︁
𝑑𝑖

𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1))

𝐹
. (27)

Therefore, the above equation (27) implies that equation (23) holds in the base case. Next, we consider the

25

induction step from layer 𝑗 to layer 𝑗 + 1. The derivative of 𝐻 (𝑗+1) with respect to𝑊 (𝑖)
𝑝,𝑞 satisfies:

 𝜕𝐻 (𝑗+1)

𝜕𝑊
(𝑖)
𝑝,𝑞

𝐹

=

𝜙 ′
𝑗+1

(
𝑋𝑈 (𝑗+1) + 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1(𝐻 (𝑗))𝑊 (𝑗+1))) ⊙ 𝜕

(
𝑋𝑈 (𝑗+1) + 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1(𝐻 (𝑗))𝑊 (𝑗+1)))

𝜕𝑊
(𝑖)
𝑝,𝑞

𝐹

≤ 𝜅0

 𝜕𝜌 𝑗+1
(
𝑃
𝐺
𝜓 𝑗+1(𝐻 (𝑗))𝑊 (𝑗+1))
𝜕𝑊

(𝑖)
𝑝,𝑞

𝐹

(by equation (25))

≤ 𝜅0

𝜌 ′
𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1(𝐻 (𝑗))𝑊 (𝑗+1)) ⊙ 𝜕

(
𝑃
𝐺
𝜓 𝑗+1(𝐻 (𝑗))𝑊 (𝑗+1))

𝜕𝑊
(𝑖)
𝑝,𝑞

𝐹

≤ 𝜅2
0

𝑃𝐺

𝜕𝜓 𝑗+1(𝐻 (𝑗))
𝜕𝑊

(𝑖)
𝑝,𝑞

𝑊 (𝑗+1)

𝐹

(again by equation (25))

By applying equation (25) w.r.t. 𝜓 ′
𝑗+1, The above is less than:

𝜅2
0

𝑃

𝐺

𝜓 ′
𝑗+1(𝐻 (𝑗)) ⊙ 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

𝐹

𝑊 (𝑗+1)

 ≤ 𝜅3

0

𝑃

𝐺

𝑊 (𝑗+1)

 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

𝐹

.

Hence, the Jacobian of 𝐻 (𝑗+1) with respect to𝑊 (𝑖) satisfies:

 𝜕𝐻 (𝑗+1)

𝜕𝑊 (𝑖)

𝐹

≤ 𝜅3
0

𝑃

𝐺

𝑊 (𝑗+1)

 𝜕𝐻 (𝑗)

𝜕𝑊 (𝑖)

𝐹

.

From repeatedly applying the above beginning with 𝑗 = 𝑖 along with the base case of equation (27), we
conclude that equation (23) holds.

Next, we consider the base case for equation (24). For each (𝑝, 𝑞)-th entry of𝑈 (𝑖) , from the chain rule
we get:

 𝜕𝐻 (𝑖)

𝜕𝑈
(𝑖)
𝑝,𝑞

𝐹

=

𝜙 ′
𝑖

(
𝑋𝑈 (𝑖) + 𝜌𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖))) ⊙ 𝜕

(
𝑋𝑈 (𝑖) + 𝜌𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1))𝑊 (𝑖)))

𝜕𝑈
(𝑖)
𝑝,𝑞

𝐹

≤ 𝜅0

 𝜕(𝑋𝑈 (𝑖))
𝜕𝑈

(𝑖)
𝑝,𝑞

𝐹

. (by equation (25))

Therefore, by summing over 𝑝 = 1, . . . , 𝑑0 and 𝑞 = 1, . . . , 𝑑𝑖 , we get:

 𝜕𝐻 (𝑖)

𝜕𝑈 (𝑖)

𝐹

=

√√√√ 𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕𝐻 (𝑖)

𝜕𝑈
(𝑖)
𝑝,𝑞

2

𝐹

≤ 𝜅0

√√√√ 𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕(𝑋𝑈 (𝑖))
𝜕𝑈

(𝑖)
𝑝,𝑞

2

𝐹

= 𝜅0
√︁
𝑑𝑖 ∥𝑋 ∥𝐹 . (28)

26

Going from layer 𝑖 to layer 𝑗 + 1, the derivative of 𝐻 (𝑗+1) with respect to𝑈 (𝑖)
𝑝,𝑞 satisfies:

 𝜕𝐻 (𝑗+1)

𝜕𝑈
(𝑖)
𝑝,𝑞

𝐹

=

𝜙 ′
𝑗+1

(
𝑋𝑈 (𝑗+1) + 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1(𝐻 (𝑗))𝑊 (𝑗+1))) ⊙ 𝜕

(
𝑋𝑈 (𝑗+1) + 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1(𝐻 (𝑗))𝑊 (𝑗+1)))

𝜕𝑈
(𝑖)
𝑝,𝑞

𝐹

≤ 𝜅0

 𝜕𝜌 𝑗+1
(
𝑃
𝐺
𝜓 𝑗+1(𝐻 (𝑗))𝑊 (𝑗+1))
𝜕𝑈

(𝑖)
𝑝,𝑞

𝐹

(by equation (25) w.r.t. 𝜙 ′
𝑗+1)

≤ 𝜅3
0

𝑃

𝐺

𝑊 (𝑗+1)

 𝜕𝐻 (𝑗)

𝜕𝑈
(𝑖)
𝑝,𝑞

𝐹

. (by equation (25) w.r.t. 𝜌 ′
𝑗+1,𝜓

′
𝑗+1)

Hence, the Jacobian of 𝐻 (𝑗+1) with respect to𝑈 (𝑖) satisfies:

 𝜕𝐻 (𝑗+1)

𝜕𝑈 (𝑖)

𝐹

≤ 𝜅3
0

𝑃

𝐺

𝑊 (𝑗+1)

 𝜕𝐻 (𝑗)

𝜕𝑈 (𝑖)

𝐹

.

By repeatedly applying the above step beginning with the base case of equation (28), we have proved that
equation (24) holds. The proof of Proposition A.7 is complete. □

A.2.3 Deal with second-order derivatives

In the second part towards showing Theorem 3.1 for MPNNs, we look at second-order derivatives of the
embeddings. This will appear later when we deal with the trace of the Hessian. A fact that we will use
throughout the proof is

𝜙 ′′

𝑖 (𝑥)

∞ ≤ 𝜅1,

𝜓 ′′
𝑖 (𝑥)

∞ ≤ 𝜅1, and

𝜌 ′′
𝑖 (𝑥)

∞ ≤ 𝜅1, (29)

for any 𝑥 and 𝑖 = 1, . . . , 𝑙 − 1. This is because 𝜙 ′
𝑖 ,𝜓

′
𝑖 , and 𝜌 ′

𝑖 are all 𝜅1-Lipschitz continuous from Assumption
A.2.

Proposition A.8. In the setting of Theorem 3.1, the second-order derivative of 𝐻 (𝑙) with respect to𝑊 (𝑖) and
𝑈 (𝑖) satisfies the following, for any 𝑖 = 1, . . . , 𝑙 − 1 and any 𝑗 = 𝑖, . . . , 𝑙 − 1:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑗)(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

≤ 𝐶𝑖, 𝑗𝜅1𝑑𝑖 max(

𝑃

𝐺

𝑗−𝑖+2
,

𝑃

𝐺

2(𝑗−𝑖+1))

𝐻 (𝑖−1)

2

𝐹

𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 , (30)

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑗)(
𝑈

(𝑖)
𝑝,𝑞

)2

𝐹

≤ 𝐶𝑖, 𝑗𝜅1𝑑𝑖 max(

𝑃

𝐺

𝑗−𝑖 ,

𝑃
𝐺

2(𝑗−𝑖)) ∥𝑋 ∥2
𝐹

𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 , (31)

where 𝐶𝑖, 𝑗

𝐶𝑖, 𝑗 =


𝜅

3(𝑗−𝑖+1)
0

𝜅
3(𝑗−𝑖)+2
0 − 1
𝜅0 − 1 , 𝜅0 ≠ 1,

3(𝑗 − 𝑖) + 2, 𝜅0 = 1,

and 𝐶𝑖, 𝑗

𝐶𝑖, 𝑗 =


𝜅

3(𝑗−𝑖)
0

𝜅
3(𝑗−𝑖)+1
0 − 1
𝜅0 − 1 , 𝜅0 ≠ 1,

3(𝑗 − 𝑖) + 1, 𝜅0 = 1.

are fixed constants that depend on the Lipschitz-continuity of the activation mappings.

27

Proof. First, we will consider equation (30). To simplify the derivation, we introduce two notations for
brevity. Let

𝐹 𝑗 = 𝑃
𝐺
𝜓 𝑗

(
𝐻 (𝑗−1))𝑊 (𝑗) and 𝐸 𝑗 = 𝑋𝑈 (𝑗) + 𝜌 𝑗

(
𝐹 𝑗

)
.

In the base case when 𝑗 = 𝑖 , from the first-order derivative in equation (26), we use the chain rule to get:

𝜕2𝐻 (𝑖)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2 =𝜙 ′′
𝑖 (𝐸𝑖) ⊙

𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

+ 𝜙 ′
𝑖 (𝐸𝑖) ⊙ 𝜌 ′′

𝑖 (𝐹𝑖) ⊙
𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

. (32)

Using equation (29), the maximum entries of 𝜙 ′′
𝑖 (·), 𝜌 ′′

𝑖 (·) are at most 𝜅1. Using equation (25), the maximum
entry of 𝜙 ′

𝑖 (·) is at most 𝜅0. Notice that the derivative of 𝐸𝑖 can be reduced to the derivative of 𝐹𝑖 as follows:

 𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

=

𝜌 ′
𝑖 (𝐹𝑖) ⊙

𝜕𝐹1

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

≤ 𝜅2
0

 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

. (33)

Therefore, based on the conditions for first- and second-order derivatives (cf. (25) and (29)), the Frobenius
norm of the above equation (32) is at most:

 𝜕2𝐻 (𝑖)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

≤ 𝜅1

 𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

+ 𝜅0𝜅1

 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

≤ (𝜅0 + 1)𝜅0𝜅1

 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

.

Notice that the derivative of 𝐹𝑖 with respect to𝑊 (𝑖)
𝑝,𝑞 is nonzero only in the 𝑞-th column of 𝐹𝑖 , and is equal

to the 𝑝-th column of 𝑃
𝐺
𝑔𝑖 (𝐻 (𝑖−1)). Therefore, by summing over 𝑝 = 1, . . . , 𝑑𝑖−1 and 𝑞 = 1, . . . , 𝑑𝑖 , we get:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕𝐹𝑖

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

2

𝐹

≤ 𝑑𝑖

𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1))

2

𝐹
.

Therefore, we have derived the base case when 𝑗 = 𝑖 as:

 𝜕2𝐻 (𝑖)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

≤ (𝜅0 + 1)𝜅3
0𝜅1𝑑𝑖

𝑃
𝐺

2

𝐻 (𝑖−1)

2

𝐹
. (34)

Next, we consider the induction step from layer 𝑗 to layer 𝑗 + 1. This step is similar to the base case but also
differs since 𝐻 (𝑗) is now dependent on𝑊 (𝑖) . Recall that the second-order derivatives satisfy equation (29).
Based on the Lipschitz-continuity conditions, the Frobenius norm of the second-order derivatives satisfies:

 𝜕2𝐻 (𝑗+1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

≤ 𝜅1

 𝜕𝐸 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

+ 𝜅0𝜅1

 𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

+ 𝜅2
0

𝑃

𝐺

𝑊 (𝑗+1)

 (

𝜅1

 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

+ 𝜅0

 𝜕2𝐻 (𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

)
≤ (𝜅0 + 1)𝜅0𝜅1

 𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

+ 𝜅2
0

𝑃

𝐺

𝑊 (𝑗+1)

 (

𝜅1

 𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

+ 𝜅0

 𝜕2𝐻 (𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

)
. (35)

28

The last step follows similarly as equation (33). For the derivative of 𝐹 𝑗+1, using the chain rule, we get:

 𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

=

𝑃𝐺

𝜕𝜓 𝑗+1(𝐻 (𝑗))
𝜕𝑊

(𝑖)
𝑝,𝑞

𝑊 (𝑗+1)

2

𝐹

≤

𝑃

𝐺

2

𝑊 (𝑗+1)

2

 𝜕𝜓 𝑗+1(𝐻 (𝑗))

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

≤

𝑃

𝐺

2

𝑊 (𝑗+1)

2

𝜓 ′

𝑗+1(𝐻 (𝑗)) ⊙ 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

≤ 𝜅2
0

𝑃

𝐺

2

𝑊 (𝑗+1)

2

 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

.

Therefore, combining the above with equations (35) together, we get the following result:

 𝜕2𝐻 (𝑗+1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

≤
(
(𝜅0 + 1)𝜅3

0𝜅1

𝑃

𝐺

2

𝑊 (𝑗+1)

2
+ 𝜅2

0𝜅1

𝑃

𝐺

𝑊 (𝑗+1)

)

 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

+ 𝜅3
0

𝑃

𝐺

𝑊 (𝑗+1)

 𝜕2𝐻 (𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

≤ max
(

𝑃

𝐺

 ,

𝑃
𝐺

2
)
𝑠2
𝑗+1

(
(𝜅2

0 + 𝜅0 + 1)𝜅2
0𝜅1

 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

+ 𝜅3
0

 𝜕2𝐻 (𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

)
.

Based on equation (23) of Proposition (A.7), the first-order derivative of 𝐻 (𝑗) satisfies:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕𝐻 (𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

2

𝐹

≤ 𝜅
6(𝑗−𝑖+1)
0 𝑑𝑖

𝑃
𝐺

2(𝑗−𝑖+1)

𝐻 (𝑖−1)

2 𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 . (36)

Applying equation (36) to the above (and summing over 𝑝 = 1, . . . , 𝑑𝑖−1 and 𝑞 = 1, . . . , 𝑑𝑖) forms the induction
step for showing equation (30):

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑗+1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

≤
𝜅3

0 − 1
𝜅0 − 1𝜅

6(𝑗−𝑖+1)+2
0 𝜅1𝑑𝑖 max

(

𝑃
𝐺

2(𝑗−𝑖)+3
,

𝑃

𝐺

2(𝑗−𝑖)+4
)

𝐻 (𝑖−1)

2

𝐹

𝑗+1∏
𝑡=𝑖+1

𝑠2
𝑡

+ 𝜅3
0 max

(

𝑃
𝐺

 ,

𝑃
𝐺

2)
𝑠2
𝑗+1

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

.

By repeatedly applying the induction step along with the base case in equation (34), we have shown that
equation (30) holds:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑗)(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

≤ 𝐶𝑖, 𝑗𝜅1𝑑𝑖 max(

𝑃

𝐺

𝑗−𝑖+2
,

𝑃

𝐺

2(𝑗−𝑖+1))

𝐻 (𝑖−1)

2

𝐹

𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 , (37)

where 𝐶𝑖, 𝑗 satisfies the following equation:

𝐶𝑖, 𝑗 =


𝜅

3(𝑗−𝑖+1)
0

𝜅
3(𝑗−𝑖)+2
0 − 1
𝜅0 − 1 , 𝜅0 ≠ 1,

3(𝑗 − 𝑖) + 2, 𝜅0 = 1.

29

In the second part of the proof, we consider equation (31) similar to the first part. However, the analysis
will be significantly simpler. We first consider the base case. Similar to equation (32), the second-order
derivative of 𝐻 (𝑖) over𝑊 (𝑖)

𝑝,𝑞 satisfies, for any 𝑝 = 1, . . . , 𝑑0 and 𝑞 = 1, . . . , 𝑑𝑖 :

 𝜕2𝐻 (𝑖)

𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2

𝐹

=

𝜙 ′′
𝑖 (𝐸𝑖) ⊙

𝜕𝐸𝑖

𝜕𝑈
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐸𝑖

𝜕𝑈
(𝑖)
𝑝,𝑞

 ≤ 𝜅1

 𝜕(𝑋𝑈 (𝑖))
𝜕𝑈

(𝑖)
𝑝,𝑞

2

𝐹

.

Therefore, by summing up the above over all 𝑝 and 𝑞, we get the base case result:
𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑖)

𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2

𝐹

≤ 𝜅1𝑑𝑖 ∥𝑋 ∥2
𝐹 . (38)

Next, we consider the induction step from layer 𝑗 to layer 𝑗 + 1. This step follows the same analysis until
equation (37), from which we can similarly derive that:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑗)(
𝑈

(𝑖)
𝑝,𝑞

)2

𝐹

≤ 𝐶𝑖, 𝑗𝜅1𝑑𝑖 max(

𝑃

𝐺

𝑗−𝑖 ,

𝑃
𝐺

2(𝑗−𝑖)) ∥𝑋 ∥2
𝐹

𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 . (39)

where 𝐶𝑖, 𝑗 satisfies the following equation:

𝐶𝑖, 𝑗 =


𝜅

3(𝑗−𝑖)
0

𝜅
3(𝑗−𝑖)+1
0 − 1
𝜅0 − 1 , 𝜅0 ≠ 1,

3(𝑗 − 𝑖) + 1, 𝜅0 = 1.
□

A.2.4 Proof of Theorem 3.1

Based on Propositions A.7 and A.8, we are ready to present the proof of Theorem 3.1 for message passing
GNNs. First, we will apply the bounds on the derivatives back in Lemma 4.3. After getting the trace of the
Hessians, we then use the PAC-Bayes bound from Lemma 4.1 to complete the proof.

Proof of Theorem 3.1. By applying equations (23) and (30) into Lemma 4.3’s result, we get that the trace of
H(𝑙) with respect to𝑊 (𝑖) is less than:

𝜅0

√
𝑘

√
𝑛
𝐶𝑖,𝑙−1𝜅1𝑑𝑖 max

(

𝑃
𝐺

𝑙−𝑖+1
,

𝑃

𝐺

2(𝑙−𝑖))

𝐻 (𝑖−1)

2

𝐹

(𝑙∏
𝑡=𝑖+1

𝑠2
𝑡

)
+ 𝜅1

𝑘

𝑛
𝜅

6(𝑙−𝑖)
0 𝜅1𝑑𝑖

𝑃
𝐺

2(𝑙−𝑖)

𝐻 (𝑖−1)

2

𝐹

𝑙∏
𝑡=𝑖+1

𝑠2
𝑡

≤ (𝜅0𝐶𝑖,𝑙−1 + 𝜅6(𝑙−𝑖)
0)

√︂
𝑘

𝑛
𝜅1𝑑𝑖 max

(

𝑃
𝐺

𝑙−𝑖+1
,

𝑃

𝐺

2(𝑙−𝑖)
)

𝐻 (𝑖−1)

2

𝐹

𝑙∏
𝑡=𝑖+1

𝑠2
𝑡 , (40)

for any 𝑖 = 1, 2, · · · , 𝑙 − 1. Here we have

𝜅0𝐶𝑖,𝑙−1 + 𝜅6(𝑙−𝑖)
0 =


𝜅

3(𝑙−𝑖)+1
0

𝜅
3(𝑙−𝑖)
0 − 1
𝜅0 − 1 , 𝜅0 ≠ 1,

3(𝑙 − 𝑖) − 1, 𝜅0 = 1.

It remains to consider the Frobenius norm of 𝐻 (𝑖−1) . Notice that this satisfies the following:

𝐻 (𝑖−1)

𝐹
≤ 𝜅0

𝑋𝑈 (𝑖−1) + 𝜌𝑖−1(𝑃𝐺
𝜓𝑖−1(𝐻 (𝑖−2)))𝑊 (𝑖−1)

𝐹

≤ 𝜅0

𝑈 (𝑖−1)

 ∥𝑋 ∥𝐹 + 𝜅3

0

𝑃

𝐺

𝑊 (𝑖−1)

𝐻 (𝑖−2)

𝐹

≤ 𝜅0𝑠𝑖 ∥𝑋 ∥𝐹 + 𝜅3
0

𝑃

𝐺

 𝑠𝑖

𝐻 (𝑖−2)

𝐹
.

30

By induction over 𝑖 for the above step, we get that the Frobenius norm of 𝐻 (𝑖−1) must be less than:

(
𝜅

3(𝑖−1)
0 +

𝑖−2∑︁
𝑗=0

𝜅
3𝑗+1
0

)√
𝑘 max

(𝑋,𝐺,𝑦)∼D
∥𝑋 ∥ max

(
1,

𝑃
𝐺

𝑖−1) 𝑖−1∏
𝑗=1

𝑠 𝑗 . (41)

By applying the above (41) back in (40), we have shown that the trace of H(𝑙) with respect to𝑊 (𝑖) is less
than:

𝐶 ′ max
(𝑋,𝐺,𝑦)∼D

∥𝑋 ∥2 𝜅1𝑑𝑖𝑘 max(1, ∥𝑃
𝐺
∥2(𝑙−1))

𝑙∏
𝑡=1:𝑡≠𝑖

𝑠2
𝑡 , (42)

where 𝐶 ′ satisfies the following equation:

𝐶 ′ =


(𝜅3𝑙

0 − 1) (𝜅3(𝑙−1)/2
0 − 1)2

(𝜅0 − 1)3 , 𝜅0 ≠ 1,

4
9𝑙

3, 𝜅0 = 1.

To be specific, when 𝜅0 = 1, (3(𝑙 − 𝑖) − 1)𝑖2 ≤ 4
9𝑙

3 . If 𝜅0 ≠ 1 and 𝑖 ≥ 2, we have(
𝜅

3(𝑙−𝑖)+1
0

𝜅
3(𝑙−𝑖)
0 − 1
𝜅0 − 1

) (
𝜅

3(𝑖−1)
0 +

𝑖−2∑︁
𝑗=0

𝜅
3𝑗+1
0

)2 ≤ 𝜅
3(𝑙−𝑖)+3
0

𝜅
3(𝑙−𝑖)
0 − 1
𝜅0 − 1

(𝜅3(𝑖−1)
0 − 1)2

(𝜅0 − 1)2

=
𝜅3𝑙

0 − 𝜅
3(𝑙−𝑖+1)
0

(𝜅0 − 1)3

(
(𝜅3(𝑙−𝑖)

0 − 1) (𝜅3(𝑖−1)
0 − 1)

)
≤

(𝜅3𝑙
0 − 1) (𝜅3(𝑙−1)/2

0 − 1)2

(𝜅0 − 1)3 .

If 𝜅0 ≠ 1 and 𝑖 = 1, we obtain(
𝜅

3(𝑙−𝑖)+1
0

𝜅
3(𝑙−𝑖)
0 − 1
𝜅0 − 1

) (
𝜅

3(𝑖−1)
0 +

𝑖−2∑︁
𝑗=0

𝜅
3𝑗+1
0

)2
= 𝜅3𝑙−2

0
𝜅

3(𝑙−1)
0 − 1
𝜅0 − 1 ≤

(𝜅3𝑙
0 − 1) (𝜅3(𝑙−1)/2

0 − 1)2

(𝜅0 − 1)3 .

The above works for the layers from the beginning until layer 𝑙 − 1. Last, we consider the trace of H(𝑙)

with respect to𝑊 (𝑙) (notice that 𝑼 is not needed in the readout layer). Similar to equation (19), one can
prove that the trace of the Hessian with respect to𝑊 (𝑙) satisfies:���Tr

[
H(𝑙) [ℓ (𝐻 (𝑙) , 𝑦)]

] ��� ≤𝜅0
√
𝑘

𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1

 𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑙)
𝑝,𝑞

)2

 + 𝜅1𝑘
𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1

 𝜕𝐻 (𝑙)

𝜕𝑊
(𝑙)
𝑝,𝑞

2

≤𝜅0
√
𝑘

𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1

1
𝑛
1⊤𝑛𝐻

(𝑙−1) 𝜕2𝑊 (𝑙)

𝜕
(
𝑊

(𝑙)
𝑝,𝑞

)2

 + 𝜅1𝑘
𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1

1
𝑛
1⊤𝑛𝐻

(𝑙−1) 𝜕𝑊
(𝑙)

𝜕𝑊
(𝑙)
𝑝,𝑞

2

≤𝜅1𝑘
𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1

1
𝑛
1𝑛

2

𝐻 (𝑙−1) 𝜕𝑊

(𝑙)

𝜕𝑊
(𝑙)
𝑝,𝑞

2

=𝜅1
𝑘

𝑛
𝑑𝑙

𝐻 (𝑙−1)

2

𝐹

31

By equation (41), the above is bounded by

𝜅1
𝑘

𝑛
𝑑𝑙

(
𝜅

3(𝑙−1)
0 +

𝑙−2∑︁
𝑗=0

𝜅
3𝑗+1
0

)2 max
(𝑋,𝐺,𝑦)∼D

∥𝑋 ∥2
𝐹 max

(
1,

𝑃
𝐺

2(𝑙−1)) 𝑙−1∏
𝑗=1

𝑠2
𝑗

≤ 𝐶𝑙 max
(𝑋,𝐺,𝑦)∼D

∥𝑋 ∥2 𝜅1𝑑𝑙𝑘 max
(
1,

𝑃
𝐺

2(𝑙−1)
) 𝑙∏
𝑡=1:𝑡≠𝑙

𝑠2
𝑡 ,

since ∥𝑋 ∥2
𝐹

𝑛
≤ ∥𝑋 ∥2, where 𝐶𝑙 satisfies the following equation:

𝐶𝑙 =


𝜅2

0
(𝜅3(𝑙−1)

0 − 1)2

(𝜅0 − 1)2 , 𝜅0 ≠ 1,

𝑙2, 𝜅0 = 1.

Finally, let

𝐶 = max(𝐶 ′,𝐶𝑙). (43)

From the value of 𝐶 ′ above and the value of 𝐶𝑙 , we get that 𝐶 is equal to

𝐶 =


(𝜅3𝑙

0 − 1) (𝜅3(𝑙−1)/2
0 − 1)2

(𝜅0 − 1)3 , 𝜅0 ≠ 1,

1
2𝑙

3, 𝜅0 = 1.

Similarly by applying equations (24) and (31) into Lemma 4.3, the trace of H(𝑙) with respect to 𝑈 (𝑖) is also
less than equation (42). Therefore, we have completed the proof for message-passing neural networks. □

A.3 Proof of matching lower bound (Theorem 3.2)

For simplicity, we will exhibit the instance for a graph ConvNet, that is, we ignore the parameters in 𝑼 and
also set the mapping 𝜌𝑡 and𝜓𝑡 as the identity mapping. Further, we set the mapping𝜙𝑡 (𝑥) = 𝑥 as the identity
mapping, too, for simplifying the proof. In the proof, we show that for an arbitrary configuration of weight
matrices𝑊 (1) ,𝑊 (2) , . . . ,𝑊 (𝑙) , there exists a data distribution such that for this particular configuration,
the generation gap with respect to the data distribution satisfies the desired equation (6).

Proof of Theorem 3.2. Recall that the underlying graph for the lower bound instance is a complete graph.
Next, we will specify the other parts of the data distribution D. Let 𝑍 =

∏𝑙
𝑖=1𝑊

(𝑖) denote the product
of the weight matrices. We are going to construct a binary classification problem. Thus, the dimension
of 𝑍 will be equal to 𝑛 by 2. Let 𝑍 = 𝑈𝐷𝑉⊤ be the singular value decomposition of 𝑍 . Let 𝜆max(𝑍) be
the largest singular value of 𝑍 , with corresponding left and right singular vectors 𝑢1 and 𝑣1, respectively.
Within the hypothesis set H , 𝜆max(𝑍) can be as large as

∏𝑙
𝑖=1 𝑠𝑖 . Denote a random draw from D as 𝑋,𝐺,𝑦,

corresponding to node features, the graph, and the label:

1. The feature matrix 𝑋 is is equal to 1𝑛𝑢⊤1 ;

2. The class label 𝑦 is drawn uniformly between +1 and −1;

3. Lastly, the diffusion matrix 𝑃 is the adjacency matrix of 𝐺 , which has a value of one in every entry of 𝑃 .

32

Given the example and the weight matrices, we will use the logistic loss to evaluate 𝑓 ’s loss. Notice that
𝑃 = 1𝑛1⊤𝑛 . Thus, one can verify 𝜆max(𝑃) = 𝑛. Crucially, the network output of our GCN is equal to

𝐻 (𝑙) =
1
𝑛
1⊤𝑛 𝑃

𝑙−1𝑋𝑊 (1)𝑊 (2) · · ·𝑊 (𝑙) = 𝑛𝑙−1
(1⊤𝑛𝑋

𝑛
𝑍

)
= 𝑛𝑙−1

(
𝑢⊤1 𝑈𝐷𝑉⊤

)
=

(
𝑛𝑙−1𝜆max(𝑍)

)
𝑣⊤1 .

Let us denote 𝛼 = 𝑛𝑙−1𝜆max(𝑍)—the spectral norms of the diffusion matrix and the layer weight matrices.
Let 𝑣1,1, 𝑣1,2 be the first and second coordinate of 𝑣1, respectively. Notice that 𝑦 is drawn uniformly between
+1 or −1. Thus, with probability 1/2, the loss of this example is log(1 + exp(−𝛼 · 𝑣1,1)); with probability
1/2, the loss of this example is log(1 + exp(𝛼 · 𝑣1,2)). Let 𝑏𝑖 be a random variable that indicates the logistic
loss of the 𝑖-th example. The generalization gap is equal to

𝜖 =
1
𝑁

𝑁∑︁
𝑖=1

𝑏𝑖 −
1
2

(
log(1 + exp(−𝛼 · 𝑣1,1)) + log(1 + exp(𝛼 · 𝑣1,2))

)
.

By the central limit theorem, as 𝑁 grows to infinity, the generalization gap 𝜖 converges to a normal random
variable whose mean is zero and variance is equal to

1
4𝑁

(
log(1 + 𝑒𝑥𝑝 (−𝛼 · 𝑣1,1)) − log(1 + exp(𝛼 · 𝑣1,2))

)2
≳

𝛼2

𝑁
,

for large enough values of 𝑛. As a result, with probability at least 0.1, when 𝑁 is large enough, the
generalization gap 𝜖 must be at least

O
(√︂

𝛼2

𝑁

)
, where 𝛼 =

𝑃
𝐺

𝑙−1
𝜆max

(
𝑙∏

𝑖=1
𝑊 (𝑖)

)
.

Notice that the spectral norm of the product matrix can be realized at most as
∏𝑙

𝑖=1 𝑠𝑖 . Thus, we have
completed the proof of equation (6). □

A.4 Proof for graph isomorphism networks (Corollary 4.5)

To be precise, we state the loss function for learning graph isomorphism networks as the averaged loss
over all the classification layers:

ℓ̄ (𝑓 (𝑋,𝐺), 𝑦) = 1
(𝑙 − 1)

𝑙−1∑︁
𝑖=1

ℓ

(1
𝑛
1⊤𝑛𝐻

(𝑖)𝑉 (𝑖) , 𝑦
)
. (44)

Thus, 𝐿̂𝐺𝐼𝑁 (𝑓) is equivalent to the empirical average of ℓ̄ over𝑁 samples fromD. 𝐿𝐺𝐼𝑁 (𝑓) is then equivalent
to the expectation of ℓ̄ over a random sample from D.

Proof of Corollary 4.5. This result follows the trace guarantee from Lemma 4.3. For any 𝑖 = 1, . . . , 𝑙 − 1 and
any 𝑗 = 𝑖, . . . , 𝑙 − 1, we can derive the following result with similar arguments:����Tr

[
H(𝑖)
𝑾

[
ℓ

(1
𝑛
1⊤𝑛𝐻

(𝑗)𝑉 (𝑗) , 𝑦
)]] ���� ≤ 𝜅0

√
𝑘

√
𝑛

𝑉 (𝑗)

 𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

 𝜕2𝐻 (𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

𝐹

+ 𝜅1𝑘

𝑛

𝑉 (𝑗)

2

 𝜕𝐻 (𝑗)

𝜕𝑊 (𝑖)

2

𝐹

.

Next, we repeat the steps in Propositions A.7 and A.8, for any 𝑖 = 1, . . . , 𝑙 − 1 and any 𝑗 = 𝑖, . . . , 𝑙 − 1:

max
(𝑋,𝐺,𝑦)∼D

����Tr
[
H(𝑖) [ℓ

(1
𝑛
1⊤𝑛𝐻

(𝑗)𝑉 (𝑗) , 𝑦
)
]
] ���� ≤ 2𝜅1𝐶𝑑𝑖𝑘 max

(𝑋,𝐺,𝑦)∼D
∥𝑋 ∥2 max

(
1,

𝑃
𝐺

2(𝑗−𝑖+1)
)

𝑉 (𝑗)

2 𝑗∏
𝑡=1: 𝑡≠𝑖

𝑠2
𝑡 .

33

Based on the above step, the trace of the Hessian matrix of the loss function with respect to𝑊 (𝑖) ,𝑈 (𝑖)

satisfies:

max
(𝑋,𝐺,𝑦)∼D

���Tr
[
H(𝑖) [ℓ̄ (𝑓 (𝑋,𝐺), 𝑦)]] ��� = max

(𝑋,𝐺,𝑦)∼D

�����Tr
[
H(𝑖) [1

(𝑙 − 1)

𝑙−1∑︁
𝑗=1

ℓ
(1
𝑛
1⊤𝑛𝐻

(𝑗)𝑉 (𝑗) , 𝑦
)]] �����

=
1

𝑙 − 1

𝑙−1∑︁
𝑗=𝑖

max
(𝑋,𝐺,𝑦)∼D

����Tr
[
H(𝑖) [ℓ (1

𝑛
1⊤𝑛𝐻

(𝑗)𝑉 (𝑗) , 𝑦
)]] ����

≤2𝜅1𝐶𝑑𝑖𝑘
𝑙−1max
𝑗=1

𝑉 (𝑗)

2 (

max
(𝑋,𝐺,𝑦)∼D

∥𝑋 ∥2
𝑙−1∑︁
𝑗=1

max
(
1,

𝑃
𝐺

2𝑗)
𝑙 − 1

) 𝑙−1∏
𝑡=1: 𝑡≠𝑖

𝑠2
𝑡 .

Within the above step, the propagation matrix satisfies:

1
(𝑙 − 1)

𝑙−1∑︁
𝑗=1

max
(
1,

𝑃
𝐺

2𝑗) ≤ max ©­«1,

 1
𝑙 − 1

𝑙−1∑︁
𝑗=1

𝑃 𝑗
𝐺

2ª®¬ .
Notice that 𝑃𝐺𝐼𝑁 = 1

𝑙−1
∑𝑙−1

𝑗=1 𝑃
𝑗
𝐺 . Thus, we have completed the generalization error analysis for graph

isomorphism networks in equation (11). □

B Experiment Details
For our result, we measure 𝐵 as an upper bound on the loss value taken over the entire data distribution.
Across five datasets in our experiments, setting 𝐵 = 5.4 suffices for all the training and testing examples in
the datasets.

For comparing generalization bounds, we use two types of model architectures, including GCN [35] and
the MPGNN in Liao et al. [37]. Following the setup in Liao et al. [37], we apply the same network weights
across multiple layers in one model, i.e.,𝑊 (𝑡) =𝑊 and𝑈 (𝑡) = 𝑈 across the first 𝑙 − 1 layers. For GCNs, we
set 𝑼 as zero, 𝜌𝑡 and𝜓𝑡 as identity mappings, 𝜙𝑡 as ReLU function. For MPGNNs, we specify 𝜙𝑡 as ReLU, 𝜌𝑡
and𝜓𝑡 as Tanh function. For both model architectures, we set the width of each layer 𝑑𝑡 = 128 and vary
the network depth 𝑙 in 2, 4, and 6. On the three collaboration network datasets, we use one-hot encodings
of node degrees as input node features. We train the models with Adam optimizer with a learning rate
of 0.01 and set the number of epochs as 50 and batch size as 128 on all three datasets. We compute the
generalization bounds following the setup in Liao et al. [37]. We state the results with our notations in the
following.
• Theorem 3.4 from Liao et al. [37]:√√√

422

𝛾2𝑁

(
max

(𝑋,𝐺,𝑦)∼D
∥𝑋 ∥2

) (
max

(
𝜁 −𝑙+1, (𝜆𝜉) 𝑙+1

𝑙

))2
𝑙2ℎ log(4𝑙ℎ) (2𝑠2

1𝑟
2
1 + 𝑠2

𝑙
𝑟 2
𝑙
)),

where 𝜁 = min(𝑠1, 𝑠𝑙), 𝜆 = 𝑠1𝑠𝑙 , 𝜉 =
(𝑑𝑠1)𝑙−1−1
𝑑𝑠1−1 , 𝑑 is the max degree, ℎ is the max hidden width, and 𝛾 is

the desired margin in the margin loss. Note that 𝑠𝑖 = 𝑠1 and 𝑟𝑖 = 𝑟1 for 1 ≤ 𝑖 ≤ 𝑙 − 1 since the first 𝑙 − 1
layers apply the same weight.

• Proposition 7 from Garg et al. [16]:

48𝑠𝑙ℎ𝑍

√︄
3

𝛾2𝑁
log

(
24𝑠𝑙

√
𝑁 max

(
𝑍,𝑀

√
ℎ max

(
𝜅2𝑠1, 𝑅𝑠1

)))
,

where𝑀=
(𝑑𝑠1)𝑙−1−1
𝑑𝑠1−1 , 𝑅 = 𝑑 ·min(𝜅1

√
ℎ, 𝜅2𝑠1𝑀), 𝑍 = 𝜅2𝑠1+𝑅𝑠1, 𝜅1 = max

𝑥 ∈Rℎ
∥𝜙 (𝑥)∥∞, and𝜅2 = max

(𝑋,𝐺,𝑦)∼D
∥𝑋 ∥2.

34

	Introduction
	Related Work
	Sharp Generalization Bounds for Graph Neural Networks
	Problem setup
	Main results
	Comparison with prior art
	A matching lower bound

	Proof Techniques and Extensions
	Extensions

	Optimizing Noise Stability Properties for Fine-tuning GNN
	Experimental setup
	Experimental results

	Conclusion
	Proofs
	Proof of our PAC-Bayesian bound (Lemma 4.1)
	Proof of Proposition A.4

	Proof for message passing graph neural networks
	Proof of Lemma 4.3
	Dealing with first-order derivatives
	Deal with second-order derivatives
	Proof of Theorem 3.1

	Proof of matching lower bound (Theorem 3.2)
	Proof for graph isomorphism networks (Corollary 4.5)

	Experiment Details

