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Abstract

In a Fisher market game, a market equilibrium is computed
in terms of the utility functions and money endowments that
agents reported. As a consequence, an individual buyer may
misreport his private information to obtain a utility gain. We
investigate the extent to which an agent’s utility can be in-
creased by unilateral strategic plays and prove that the per-
centage of this improvement is at most 2 for markets with
weak gross substitute utilities. Equivalently, we show that
truthfully reporting is a 0.5-approximate Nash equilibrium in
this game. To identify sufficient conditions for truthfully re-
porting being close to Nash equilibrium, we conduct a pa-
rameterized study on strategic behaviors and further show
that the ratio of utility gain decreases linearly as buyer’s
initial endowment increases or his maximum share of an
item decreases. Finally, we consider collusive behavior of
a coalition and prove that the utility gain is bounded by
1/(1 − maximum share of the collusion). Our findings jus-
tify the truthful reporting assumption in Fisher markets by a
quantitative study on participants incentive, and imply that
under large market assumption, the utility gain of a buyer
from manipulations diminishes to 0.

Introduction
The Internet and World Wide Web have created a possibil-
ity for buyers and sellers to meet at a marketplace in which
pricing and allocations can be determined more efficiently
and effectively than ever before. Market equilibrium, a vi-
tal notion in classic economic theory, ensures optimum fair-
ness and efficiency and has become a paradigm for practical
applications in computer science. Understanding its proper-
ties and computation has been one of the central questions
in economics and computer science. In this paper, we con-
sider the Fisher market model (Brainard and Scarf 2000),
in which a market maker sells divisible items of unit sup-
ply each to potential buyers, each endowed with an initially
amount of cash and a utility function. At a market equilib-
rium, all products are sold out, all cash is spent, and, most
importantly, the set of items purchased by each buyer maxi-
mizes his utility for the given equilibrium prices constrained
by his initial endowment. It has been shown that a market
equilibrium always exists given mild assumptions (Arrow
and Debreu 1954).
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However, there is a major issue on the application of mar-
ket equilibrium in that it has not taken strategic behavior of
the participants into consideration: In a Fisher market, mar-
ket equilibrium prices and associated allocations, computed
in terms of utility functions and money endowments, may
change even if one participant has a change in its utility func-
tion or endowment. Hence, one may misreport his private
information if it results in a favorable solution.
Example 1. Consider a market with two items and two
buyers with endowments (ε, 1 − ε) and utility functions
u1(x, y) = εx+(1−ε)y, u2(x, y) = ε2x+(1−ε2)y, respec-
tively. When both buyers report truthfully, the equilibrium
price is p = (ε, 1− ε) and the first player gets all fraction of
the first item with utility ε. If the first buyer strategically re-
ports u′

1 = u2, then the equilibrium price is p′ = (ε2, 1−ε2)
and he gets the bundle with x = 1, y = ε/(1 + ε) for which
his utility is ε(1 + (1− ε)/(1 + ε)). When ε = 1/2, the first
player improves his utility from 1/2 to 5/6. When ε goes to
0, he doubles his utility from ε to a value close to 2ε.

Based on this observation, Adsul et al. (2010) formulated
the Fisher market game and studied the strategic behaviors
by examining the induced Nash equilibrium. Nonetheless,
the investigation on Nash equilibrium suffers from two ma-
jor drawbacks. Nash equilibrium is shown to be compu-
tationally intractable (Daskalakis, Goldberg, and Papadim-
itriou 2009), even for two-player games (Chen, Deng, and
Teng 2009) or within a small constant approximation fac-
tor (Rubinstein 2015). Even if equilibria can be computed
efficiently, a recent work by Brânzei et al. (2014) shows that
their social welfare might be far from the one in market un-
der truthfully reporting.

In this paper, we quantitatively measure a buyer’s utility
gain by strategic plays by adopting the notion of incentive
ratio (Chen, Deng, and Zhang 2011). Incentive ratio is de-
fined as the factor of the largest possible utility gain that a
participant can achieve by behaving strategically, given that
all other participants have their strategies unchanged. Incen-
tive ratio characterizes the extent to which utilities can be in-
creased by strategic manipulations. A smaller incentive ratio
implies that a buyer has less incentive to influence the mar-
ket price formation through (complicated) strategic consid-
erations by a significant effort to collect all utility functions
of other market participants.

First of all, we consider a widely studied class of weak
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gross substitute (WGS) preferences. Informally, under WGS
preferences, when the price of an item increases, a buyer
will not decrease his consumption on items whose prices
do not change. We show that incentive ratio is at most 2
if all buyers have WGS utility functions. Prior to our results,
constant bounds on incentive ratio are only known for mar-
kets with three specific utilities, Leontief (Chen, Deng, and
Zhang 2011), Linear and Cobb-Douglas (Chen et al. 2012).
Although the latter two functions satisfy WGS, our proof
techniques are different from and much simpler than theirs.
Another interpretation of our result is that, truthfully report-
ing turns out to be a 0.5-approximate Nash equilibrium in
Fisher market game. Therefore, no one would manipulate to
gain twice as much utility. In complement to the above up-
per bounds, we illustrate a simple example where a buyer’s
incentive ratio could be unbounded if the utility function
is additive piecewise linear, which does not satisfy WGS.
Our approach escapes from the above two curses on study-
ing exact Nash equilibrium, i.e. computational intractabil-
ity and economic inefficiency, by considering its approxi-
mate alternative. This relaxed version of Nash equilibrium
has been extensively studied in game theory and artificial
intelligence (Daskalakis, Mehta, and Papadimitriou 2007;
Ponsen, De Jong, and Lanctot 2011; Fearnley et al. 2013;
Czumaj, Fasoulakis, and Jurdziński 2015).

Nevertheless, an ε-approximate Nash equilibrium is
hardly a compelling proposal unless ε is very small, because
each buyer knows how to make an attractive profit by devi-
ating from it. To overcome this obstacle, we conduct a pa-
rameterized study on incentive ratio to understand individ-
ual strategic behaviors and identify sufficient conditions for
markets where buyers have little incentive to deviate from
truthfully reporting. We choose two important parameters
that reflects the influence of an individual buyer on the mar-
ket. One is the initial normalized endowment of a buyer i
denoted by ei, and the other one is αi, his maximum share,
which is the largest equilibrium allocation among all indi-
vidual items (each a unit in total). We show that the incentive
ratio of the buyer is at most 2−ei and 1+αi, respectively, if
the utility functions satisfy WGS and a natural homogeneous
condition that is extensively used in economics (Eisenberg
1961). Intuitively, if a buyer dominates a particular item,
then he has considerable market power and may influence
market prices; and, conversely, the more endowment a buyer
has, the less incentive he may have to manipulate, since there
is less value left in the market to be gained by his manipula-
tive behavior.

Finally, we consider coordinated decisions in a market
taken by a group of buyers to influence market prices to im-
prove their utilities. We again make a parameterized study
on incentive ratio to gauge a coalition’s incentive for col-
lusive behavior, which is defined as the maximum factor of
utility gain from the members of a collusion, given that no
one in the collusion is worse off. While in general the in-
centive ratio of a collusion S can be unbounded in the worst
case, we show that the incentive ratio is at most 1/(1− α

S
)

for homogeneous utilities that satisfy the weak gross substi-
tute condition, where α

S
is the maximum share that S ob-

tains on any individual item in equilibrium allocations.

Our parameterized study on incentive ratio directly im-
plies that strategic manipulations of an individual buyer is
of little impact on a market if his share is small. In par-
ticular, for a large market with replicated economies, the
maximum share of any buyer diminishes to 0 as the mar-
ket grows, and thus, the incentive ratio converges to 1. This
gives a quantitative reinterpretation of the classical eco-
nomic statement that incentives for strategy behavior in mar-
ket equilibrium mechanism decreases as the market grows
(Roberts and Postlewaite 1976; Otani and Sicilian 1982;
Jackson and Manelli 1997). Furthermore, our results can
be also adopted in finite markets and carried over to the
scenarios that allow collusive strategic behavior, that seems
to represent the most vulnerable point towards justifying
the assumption of price-taking (i.e. truthful) behavior as
pointed out by Johansen (1977). Similar relations between
large game assumption and strategy behavior have been
also established in stable matching (Immorlica and Mahdian
2005), λ-continuous and anonymous games (Gradwohl and
Reingold 2008), market design (Azevedo and Budish 2012),
envy-free pricing (Anshelevich, Kar, and Sekar 2015) and
bandwidth allocation (Cheng et al. 2015).

Preliminaries

In a given Fisher market, there are n buyers and m divisi-
ble goods (items, interchangeably) of unit quantity each. We
use [n] = {1, 2, . . . , n} and [m] = {1, 2, . . . ,m} to denote
the set of buyers and items, respectively. Each buyer has
an initial cash endowment ei, which is normalized 1 to be∑

i∈[n] ei = 1, and a utility function ui : [0, 1]
m → R. That

is, for a given allocation xi = (xi1, xi2, . . . , xim) ∈ [0, 1]m,
where xij is the amount that buyer i receives from item j,
ui(xi) denotes the obtained utility of buyer i. We assume
that utility functions are monotone (i.e., u(x) ≥ u(x′), for
any x ≥ x′) and normalized to be 0 when the allocation is
empty (i.e., u(0) = 0).

An outcome of the market is represented by a tuple (p,x),
where p = (p1, p2, . . . , pm) is a price vector of all items and
x = (x1,x2, . . . ,xn) is an allocation vector of all buyers.
We say that xi is an optimal allocation for buyer i with re-
spect to a price vector p if xi maximizes his utility function
ui(y) subject to the endowment constraint p · y ≤ ei. An
outcome is called a market equilibrium if the following two
conditions hold.

• Market clearance: All items are sold out and all cash en-
dowments are spent, that is

∑
i∈[n] xij = 1 for all item j,

and
∑

j∈[m] pj =
∑

i∈[n] ei = 1.

• Individual optimality: The market allocation xi is an op-
timal allocation for each buyer i with respect to the price
vector p.

Utility Functions

We review some standard definitions of utility functions.

1In some of the examples described in the paper endowments
may not be normalized for the ease of presentation.
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Definition 1 (Concavity). A utility function u(·) is said to
be concave if for any x,x′ ∈ [0, 1]m and for any t ∈ [0, 1],

u
(
t · x+ (1− t) · x′) ≥ t · u(x) + (1− t) · u(x′)

Arrow and Debreu (1954) established that a market equi-
librium always exists under the assumption that utility func-
tions are concave. In the following discussions, all utility
functions are assumed to be concave.
Definition 2 (Demand set). For a given price vector p, the
demand set of buyer i, denoted by Di(p, ei), is the set of all
optimal allocations of the following program:

max ui(x) s.t. p · x ≤ ei (1)

A very nice characterization of the demand set Di(p, ei)
says that the marginal bang-per-buck ratio of all purchased
items (which measures the per-buck utility of the items) is
the same in an optimal allocation. The following proposition
relates different allocations to their respective utilities.
Proposition 2. Let yi = (yij)j ∈ Di(p, ei) be an optimal
allocation of buyer i with respect to a price vector p. Then
there exists a constant ci ≥ 0 such that for any other alloca-
tion y′

i for buyer i, we have∑
j∈[m] cipj(yij − y′ij) ≤ ui(yi)− ui(y

′
i)

In particular, this implies that ciei ≤ ui(yi).

Proof. Let L(xi, λ) = −ui(xi) + λ(p · xi − ei) be the
Lagrangian associated with the problem (1) and

g(λ) = inf
xi∈[0,1]m

(−ui(xi) + λ(p · xi − ei))

be the dual function. Since ui(·) is concave and the con-
straint is affine, it is not hard to see that the problem (1)
satisfies strong duality (Boyd and Vandenberghe 2004). Let
ci be the optimal dual solution of g(λ). Then

−ui(yi) = g(ci) ≤ L(yi, ci) ≤ −ui(yi)

where the first equality follows from strong duality, the sec-
ond inequality follows by definition, and the third inequality
follows by ci ≥ 0 and p · xi ≤ ei. Hence

L(yi, ci) = g(ci) ≤ L(y′
i, ci)

for any other allocation vector y′
i ∈ [0, 1]m.

In the above claim, ci gives a lower bound on the bang-
per-buck ratio of buyer i’s optimal consumption, where the
bang-per-buck ratio is given by ui(yi)/ei.

A central definition employed in the paper is the follow-
ing weak gross substitute (c.f. (Mas-Colell, Whinston, and
Green 1995)). We will assume that utility functions are dif-
ferentiable on [0, 1]m.
Definition 3 (Weak gross substitute). A utility function
ui(·) is said to have the weak gross substitute (WGS) prop-
erty if the demand set Di(p, ei) of buyer i contains a unique
allocation, that is, if the maximization of ui(x) subject to
the endowment constraint, as a function of prices, yields de-
mand functions dij(p) from each buyer i to item j that is
differentiable, and ∂dij

∂pk
≥ 0, ∀k �= j.

WGS property ensures that increasing the prices of some
items will not cause a buyer to reduce his consumption of an
item whose price has not been changed. It is also not hard
to see that equilibrium prices are unique. The family of con-
stant elasticity of substitution (CES) utility functions, i.e.,
u(x) = (

∑
j∈[m] αjx

ρ
j )

1/ρ where 0 ≤ ρ < 1, are examples
that satisfy the above definition.

Incentive Ratio

In a market M , we consider a buyer i ∈ [n] who attempts
to improve his market allocation through misreporting his
utility function and endowment. Let Ui denote the class of
utility functions that i can feasibly report. Given a reported
profile P , which consists of a vector of utility functions and
a vector of endowments of all buyers, let xi(P ) denote the
equilibrium allocation of buyer i. If ui(·) ∈ Ui and ei are
buyer i’s private true utility function and endowment, re-
spectively, then the incentive ratio of buyer i in the market
M is defined to be

ζMi = max
u−i; e−i

max
u′
i
∈Ui; e′

i
≤ei

ui

(
xi(u

′
i, e

′
i;u−i, e−i)

)
ui

(
xi(ui, ei;u−i, e−i)

)
where we assume that one cannot report a budget beyond
his true endowment, i.e., e′i ≤ ei. In the above definition,
the denominator is the utility of buyer i when he bids ui and
ei truthfully, and the numerator is the largest possible util-
ity of buyer i when he unilaterally changes his bid given all
other buyers’ bids unchanged. The incentive ratio of buyer
i is defined as the maximum ratio over all possible utilities
and endowments of other buyers; it thus implies an upper
bound on utility gain from manipulation. The incentive ra-
tio of the market M with respect to a given class of utility
functions is then defined as ζM = maxi∈[n] ζ

M
i . Clearly, in

a market with incentive ratio ζ, truthfully reporting is 1/ζ-
approximate Nash equilibrium since no buyers can improve
his own utility by a factor ζ via unilaterally manipulation.

Weak Gross Substitute

In this section, we analyze the incentive ratio of utility func-
tions that satisfy the WGS condition. We first demonstrate the
following lemma, which says that if prices are changed, a
buyer will spend no less money on those items whose prices
are decreased.

Lemma 3. Given a utility function u(·) that satisfies the
WGS condition, let p and p′ be two price vectors and x ∈
D(p, e) and x′ ∈ D(p′, e) be the corresponding optimal
demands. Let S = {j ∈ [m] | pj > p′j} denote the set
of items whose prices are decreased from p to p′. Then∑

j∈S xjpj ≤
∑

j∈S x′
jp

′
j and

∑
j /∈S x′

jp
′
j ≤

∑
j /∈S xjpj .

Proof. Define a price vector p∗ = (p∗j )j as p∗j =
min{pj , p′j} and consider an optimal demand x∗ ∈
D(p∗, e). Note here that p∗j = p′j < pj , for all j ∈ S; other-
wise p∗j = pj . That is, the prices of all item j ∈ S decrease
from p to p∗ while others’ prices remain the same. For all
j ∈ [m] \ S, applying the WGS property on u(·) with prices
p and p∗, we have x∗

j ≤ xj and p∗jx
∗
j = pjx

∗
j ≤ pjxj .
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Due to the fact that
∑

j∈[m] xjpj = e =
∑

j∈[m] x
∗
jp

∗
j , we

have
∑

j∈S x∗
jp

′
j =

∑
j∈S x∗

jp
∗
j ≥

∑
j∈S xjpj . Using the

WGS condition again with prices p′ and p∗, we get x∗
j ≤ x′

j
for all j ∈ S. Combining these two inequalities, we have∑

j∈S xjpj ≤
∑

j∈S x′
jp

′
j . This completes the proof.

Our main result of the section is the following.

Theorem 4. For any market M with utility functions that
satisfy the WGS condition, the incentive ratio of the market
is at most 2, i.e., ζWGS ≤ 2.

Proof. Without loss of generality, we will consider buyer 1
and show that ζM1 ≤ 2. Let e′1 denote buyer 1’s reported
budget. For any fixed bids of other buyers, let (p,x) be
any equilibrium when buyer 1 bids truthfully and (p′,x′)
be any equilibrium when he bids strategically. It suffices
to prove that u1(x

′
1) ≤ 2u1(x1). Let S denote the set of

items whose price are decreased from p to p′, i.e., S ={
j ∈ [m] | pj > p′j

}
, and let T = [m] \ S denote the set

of items whose prices are not decreased. By Prop. 2, there
exists a constant c such that for buyer 1,

u1(x
′
1)− u1(x1) ≤

∑
j∈[m] c · pj · (x′

1j − x1j) (2)

=
∑

j∈T c · pj · (x′
1j − x1j) + c ·∑j∈S pj(x

′
1j − x1j)

Note that xi ∈ Di(p, ei) and x′
i ∈ Di(p

′, ei), for any buyer
i �= 1. By Lem. 3, they spend more money on the items in S
as their prices are decreased. In aggregate,∑

j∈S pj −
∑

j∈S x1jpj =
∑

i�=1

∑
j∈S xijpj

≤∑
i�=1

∑
j∈S x′

ijp
′
j =

∑
j∈S p′j −

∑
j∈S x′

1jp
′
j

which implies
∑

j∈S x1jpj ≥
∑

j∈S x′
1jp

′
j +

∑
j∈S(pj −

p′j). Therefore,
∑

j∈S x′
1jpj −

∑
j∈S x1jpj

≤∑
j∈S x′

1jpj −
∑

j∈S x′
1jp

′
j −

(∑
j∈S pj −

∑
j∈S p′j

)
≤∑

j∈S(x
′
1j − 1)(pj − p′j) ≤ 0

In addition, for any j ∈ T , since pj < p′j ,
∑

j∈T c · pj · (x′
1j − x1j) ≤

∑
j∈T c · pjx′

1j

≤∑
j∈T c · p′jx′

1j ≤ c · e′1 ≤ c · e1 ≤ u1(x1) (by Prop. 2)

Substituting the above inequalities to Eq. (2) yields u1(x
′
1)−

u1(x1) ≤ u1(x1). This completes the proof.

Note that the theorem applies to all utility functions that
satisfy the WGS condition. In addition, the ratio 2 given by
the theorem is tight (see Example 1).

An Example of Unbounded Incentive Ratio

We describe a situation where incentive ratio could be arbi-
trarily large for some additive piecewise linear utilities

Example 5. We consider a market with two items and two
buyers where both buyers have linear utilities. Their utilities
and endowments are as follows.

Table 1: An example for unbound incentive ratios
ui1 ui2 ei

buyer 1 x11

2
x12

2 ε

buyer 2 x21 h(x22) 1− ε

Here h(x) is a piecewise linear and concave function de-
fined as below: h(x) =⎧⎨
⎩

kx if x ≤ t

(k−1
δ t+ k)x− (k−1)x2

2δ − (k−1)t2

2δ if t < x ≤ t+ δ

x+ (k − 1)t+ (k−1)δ
2 if x > t+ δ

where k =
1− ε

2
ε
2

and t = 1−ε
1− ε

2
, and δ is a sufficiently small

number. The following figure shows an example of h(x)
when ε = 0.2 (thus, k = 9 and t = 8

9 ) and δ = t
100 = 8

900 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

x

y
=

u
(x

)

Figure 1: An illustration of h(x): the marginal utility dimin-
ishes quickly after the threshold t.

Note that the utility function of the second buyer does not
satisfy the WGS condition. Indeed, when the first item’s price
decreases from 1

2 to ε
2 and the second item’s price increases

from 1
2 to 1− ε

2 , the second buyer’s demand for the first item
decreases, contradicting the WGS condition.

If the first buyer bids truthfully, the equilibrium price vec-
tor is ( 12 ,

1
2 ) and his utility is ε. But if he misreports his utility

function to be
(
ε
2x11, (1− ε

2 )x12

)
, the equilibrium price vec-

tor becomes ( ε2 , 1− ε
2 ) and he gets the first item with a utility

of at least 1
2 . Thus, his incentive ratio is at least 1

2ε , which is
unbounded when ε approaches 0.

Parameterized Study on Strategic Behaviors

In this section, we conduct a parameterized study on incen-
tive ratio to identify some sufficient conditions for a market
where buyers have little incentive to deviate from truthfully
reporting. In particular, we will consider how initial endow-
ment and maximum share might affect a player’s incentive
to manipulate in the game. To prove the results, we need the
homogeneity assumption.
Definition 4 (Homogeneity). A utility function u(x) is ho-
mogeneous of degree k if for all c ∈ R, u(c ·x) = ck ·u(x).

Homogeneity and WGS together give us a more pre-
cise characterization of a buyer’s consumption after prices
change, as the following lemma demonstrates.
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Lemma 6. Assume that u(·) is WGS and homogeneous.
Let p and p′ be two price vectors and x ∈ D(p, e) and
x′ ∈ D(p′, e) be the corresponding optimal demands. For
any q > 0, let S(q) =

{
j ∈ [m]

∣∣ q · pj > p′j
}

. Then∑
j∈S(q) xjpj ≤

∑
j∈S(q) x

′
jp

′
j . Equivalently, if we denote

T (q) = [m] \ S(q), then
∑

j∈T (q) x
′
jp

′
j ≤

∑
j∈T (q) xjpj .

Proof. Let p′′ = p′/q and x′′ = q · x′. Since u(·) is homo-
geneous, u(x′′) = qk · u(x′). Since x′ ∈ D(p′, e) and x′′
is a feasible allocation given price p′′, we know that x′′ ∈
D(p′′, e). By the definition of p′′, for all item j ∈ S(q),
p′′j = p′j/q < pj ; and for all item j /∈ S(q), p′′j ≥ pj . Apply-
ing Prop. 3 with prices p and p′′ and the corresponding op-
timal allocations x and x′′ gives

∑
j∈S x′′

j p
′′
j ≥

∑
j∈S xjpj

where S =
{
j ∈ [m] | pj > p′′j

}
= S(q). The lemma fol-

lows the fact that x′′
j = qx′

j and p′′j = p′j/q.

Endowment

We show a negative relation between a buyer’s incentive ra-
tio and his money endowment with the following theorem.

Theorem 7. For any market M with homogeneous utilities
that satisfy the WGS condition, consider any buyer i with an
initial endowment of ei, we have ζMi ≤ 2− ei.

Proof. W.l.o.g., it suffices to show ζ1 ≤ 2 − e1. Let
(p,x) and (p′,x′) be market equilibria when buyer 1
bids truthfully and strategically, respectively. We will
show that u1(x

′
1) ≤ (2 − e1) · u1(x1). Let R(qk) ={

j ∈ [m] | p′j = qk · pj
}

. Divide all items into a collection
of subsets such that: [m] =

⋃t
k=1 R(qk) where q1 > q2 >

· · · > qt. Let γk =
∑

j∈R(qk)
pj and γ′

k =
∑

j∈R(qk)
p′j be

the sum of the prices of the items in R(qk) with respect to
p and p′, respectively. Further, define βk =

∑
j∈R(qk)

pjx1j

and β′
k =

∑
j∈R(qk)

p′jx
′
1j to be the amount of money that

buyer 1 spends on the set of items R(qk) in the consump-
tions x1 and x′

1, respectively. It follows that
∑t

k=1 βk = e1
and

∑t
k=1 β

′
k = e′1, where e′1 is the amount of endowment

that buyer 1 spends in x′.
Next, by Prop. 2, there exists a constant c such that

u1(x
′
1)− u1(x1) ≤

∑
j∈[m] c · pj(x′

1j − x1j)

=
∑t

k=1

∑
j∈R(qk)

c ·
(

p′jx
′
1j

qk
− pjx1j

)

=
∑t

k=1 c ·
(

β′k
qk
− βk

)
� Δ (3)

Thus, to have an upper bound on the utility gain u1(x
′
1) −

u1(x1), it suffices to bound Δ. Particularly we will try to
identify the constraints for and optimize over the sequence
{β′

k}, while assuming other parameters are already fixed.
For any k = 1, . . . , t−1, note that T (qk) = {j ∈ [m] | qk ·

pj ≤ p′j} =
⋃k

�=1 R(q�). By Lem. 6, for all buyers i �= 1,
they spend less money on the items in T (qk) after prices are

changed from p to p′. We therefore have
∑k

�=1(γ
′
� − β′

�) =
∑

j∈T (qk)
p′j −

∑
j∈T (qk)

p′jx
′
1j

≤ ∑
j∈T (qk)

pj −
∑

j∈T (qk)
pjx1j

=
∑k

�=1(γ� − β�)

This implies that
∑k

�=1 β
′
� ≥

∑k
�=1(β� + γ′

� − γ�). (4)

for any k = 1, . . . , t − 1. Note as well that the inequality
holds in (4) when k = t.

Now we are ready to estimate Δ. Since {qk} is a decreas-
ing sequence, Δ can be bounded by the case when the vec-
tor (β′

1, β
′
2, . . . , β

′
t) is lexicographically minimized, subject

to the set of constraints in (4). In other words, the utility
gain is maximized when less money is spent on those items
whose price are increased more. However, under the set of
constraints in (4), (β′

1, β
′
2, . . . , β

′
t) is lexicographically min-

imized when β′
k = βk + γ′

k − γk, ∀ k = 1 . . . t. And this
assignment also satisfies

∑t
k=1 β

′
k =

∑t
k=1(βk + γ′

k− γk).
Summing overall, Δ/c in Eq. (3) becomes:

∑t
k=1

(
β′k
qk
− βk

)
≤∑t

k=1

(
βk+γ′k−γk

qk
− βk

)

=
∑t

k=1
γk(βk+γ′k−γk)−βkqkγk

qkγk

=
∑t

k=1(γk − βk)(γ
′
k − γk)/γ

′
k (by qkγk = γ′

k)

≤ ∑t
k=1(γk − βk)(βk + γ′

k − γk)/γ
′
k (by γk ≥ βk)

≤ ∑t
k=1(γk − βk) ·

∑t
k=1(βk + γ′

k − γk)/
∑t

k=1 γ
′
k

=
(∑t

k=1 γk −
∑t

k=1 βk

) ·∑t
k=1 β

′
k ≤ (1− e1) · e′1

The second last inequality follows from repeatedly applying
the following Fact 8. Therefore, Eq. (3) becomes u1(x

′
1) −

u1(x1) ≤ ce′1 · (1−e1) ≤ ce1 · (1−e1) ≤ u1(x1) · (1−e1),
where the last inequality is by Prop. 2.

The following fact is used in the above proof. It can be
verified to be equivalent to (a1b2 − a2b1)

2 ≥ 0.

Fact 8. Assume that a1 + b1 and a2 + b2 are positive, then

a1b1
a1 + b1

+
a2b2

a2 + b2
≤ (a1 + a2)(b1 + b2)

a1 + b1 + a2 + b2

Maximum Share

We present a positive relation between a buyer’s incentive
ratio and his maximum share, defined as the maximum al-
location among all items that the buyer consumes: αi =
max(x,p) maxj∈[m] xij where the maximum is taken over
all market equilibria. The following claim suggests that if a
buyer dominates an item, then there may be a larger room
for him to improve his utility by manipulation.

Theorem 9. For any market M with homogeneous utilities
that satisfy the WGS condition, the incentive ratio of any
buyer i satisfies ζMi ≤ 1 + αi, where αi is the maximum
share of the buyer.
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Proof. It suffices to show u1(x
′
1) ≤ (1+α1)·u1(x1). Recall

Eq. (3) from Thm. 7:

u1(x
′
1)− u1(x1) ≤

∑t
k=1 c ·

(
β′k
qk
− βk

)
(5)

Let s denote the maximum index where qk ≥ 1 for any k ≤
s; thus, the prices of all items in T (qs) are increased from p
to p′. Note that

∑s
k=1 c ·

(
β′k
qk
− βk

)
≤ ∑s

k=1 c · (β′
k − βk)

≤ ∑t
k=s+1 c · (βk − β′

k)

The last inequality comes from Lem. 6. Substituting it to
Eq. (5), we have

u1(x
′
1)− u1(x1) ≤

∑t
k=s+1 c ·

(
β′k
qk
− βk + βk − β′

k

)

=
∑t

k=s+1 c · β′
k · 1−qk

qk
� Δ

We identify constraints for the set {β′
k}tk=s+1. By Lem. 6,

we know that all buyers i �= 1 spend more money on the
items in S(qk) =

⋃t
�=k+1 R(q�), for any k = s, . . . , t − 1.

Therefore (following a similar argument for Eq. (4)),
∑t

�=k+1(γ
′
� − β′

�) ≥
∑t

�=k+1(γ� − β�)

⇒ ∑t
�=k+1 β

′
� ≤

∑t
�=k+1(β� + γ′

� − γ�). (6)

for any k = s, . . . , t− 1 in particular.
Since { 1−qk

qk
} is an increasing sequence, Δ can be

bounded by the case when the vector (β′
t, . . . , β

′
s+1) is

lexicographically maximized, subject to the set of con-
straints (6). On the other hand, (β′

t, . . . , β
′
s+1) is lexico-

graphically maximized with these constraints when β′
k =

βk + γ′
k − γk, ∀k = s+ 1, . . . , t. Therefore,

u1(x
′
1)− u1(x1) ≤ c ·∑t

k=s+1(βk + γ′
k − γk) · 1−qk

qk
(7)

Note that when k > s, we have

βk + γ′
k − γk

βk
· 1− qk

qk
=

βk + γ′
k − γk

βk
· γk − γ′

k

γ′
k

≤ α1γk + γ′
k − γk

α1γk
· γk − γ′

k

γ′
k

≤ α1

The first inequality follows from the facts that γ′
k < γk (as

k > s) and α1 is the largest share of buyer 1 (hence βk ≤
α1γk), and the last one follows by rearranging the term to the
normal form (1−α1)γ

2
k+γkγ

′
k(α

2
1+α1−2)+γ′

k
2 ≥ 0 and

the fact that 1−α1 ≥ 0 and (α2
1+α1−2)2−4(1−α1) ≤ 0.

Therefore Eq. (7) becomes

u1(x
′
1)−u1(x1) ≤ c·∑t

k=s+1 α1 ·βk ≤ α1ce1 ≤ α1u1(x1)

where recall that
∑t

k=1 βk = e1 and the last inequality fol-
lows from Prop. 2.

Collusive Strategic Behavior

In this section, we examine strategic plays from the view-
point of collusive behavior, that is, whether buyers have
more incentives to form a collusion instead of manipulating
individually. We first generalize the definition of incentive
ratio to collusion. Let S be a coalition of buyers. The in-
centive ratio of S is defined as the largest utility gain of an
individual in S given that no one in S is worse off.

The following example shows that the utility gain of a
coalition can be unbounded, even in a large market.
Example 10. Consider a market with n buyers and m items
where the utility of each buyer is additive. Buyers 1, 2, 3 are
interested only in the first four items while all other buyers
are interested in the rest items. The profiles of the first three
buyers are shown as follows.

Table 2: An example for collusive strategic behavior

ui1 ui2 ui3 ui4 ei

buyer 1 x11

n 0 x13

4 0 2
n3

buyer 2 0 (1− 3
2n )x22

x23

2n
x24

n
1
n − 1

n2

buyer 3 2·x31

n+2 0 0 n·x34

n+2
1
n2

The equilibrium price of the first four items is ( 2
n3 ,

1
n −

3
2n2 ,

1
2n2 ,

1
n2 ). Buyer 1 gets the 1st item with utility

u1(x1) = 1
n , and buyer 2 gets the 2nd and 3rd items

with utility u2(x2) = 1 − 1
n . Suppose that buyer 1 and 2

form a collusion by bidding u′
1(x1) = x3 and u′

2(x2) =
( 12 − 1

n ) · x2 + x4

2 . Then the equilibrium price becomes
( 1
n2 ,

1
2n − 1

n2 ,
2
n3 ,

1
2n ). Now buyer 1 gets the 3rd item with

utility u1(x
′
1) = 1

4 , and buyer 2 gets the 2nd and 4th item
with utility u2(x

′
2) = 1 − 1

2n . It can be seen that the incen-
tive ratio of the coalition (precisely, buyer 1) is unbounded
(even when n approaches infinity).

In the above example, one buyer in the collusion has
a maximum share of 1, which means that the collusion
dominate some items. If the dominant power of a collu-
sion is restricted, then the incentive ratio of the collusion
is also bounded. Let us put forward to the formal defini-
tion of the maximum share α

S
of a collusion S. That is,

α
S
= max(x,p) maxj∈[m]

∑
i∈S xij where the maximum is

taken over all market equilibria.
The next theorem (whose proof is deferred to supplemen-

tary material), which is slightly weaker than Thm. 9 for the
case when |S| = 1, gives an upper bound of the incentive
ratio for a coalition.
Theorem 11. For homogeneous utility functions that satisfy
the WGS condition, the incentive ratio of a collusion S is at
most 1

1−α
S

, where α
S

is the maximum share of the collusion.

Remark. The above theorem shows that if a coalition has a
very small share of items in a market, then they have little
influence on market prices. Jackson and Manelli (1997) have
explored a similar idea: the condition that reported economy
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approaches the true economy in a large market relies on the
key assumption that agents believe that they can have little
influence on market prices.

Conclusion

This paper provided an approach towards quantifying in-
centives in the market equilibrium mechanism in respect to
strategic plays of participating buyers. We illustrated a tight
bound for WGS within the Fisher market model and explored
qualitative properties that may affect buyers’ incentive for
deviating from truthfully reporting. It is interesting to ex-
plore incentive ratio beyond Fisher market model. In par-
ticular, it seems promising to adopt the incentive ratio and
our techniques in a Walrasian exchange market introduced
in (Gul and Stacchetti 1999).
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