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Overarching goal: Towards a more practical foundation of neural networks

Research interest over the last couple of years: Understand the workings of

neural networks

A central topic in recent literature is generalization: Modern neural networks

don’t overfit as badly as one would have thought [ZBH+21]

Figure 1: A three-layer neural network trying to recognize a dog image

• D: A data distribution supported on feature space X and label space Y
• fW : A neural net with weight variable W (edge weights of Figure 1)

• ℓ(fW (x), y): a loss function that measures the performance of fW

• SGD easily minimizes empirical risk even when y is random [ZBH+21]
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This talk: Multitask learning

Given k tasks (or samples from data distributions D1, . . . ,Dk), can we

build neural networks to predict all the tasks simultaneously?

Multitask learning is studied since early days of ML w. many applications

Particularly relevant today thanks to foundation models, federated learning,

LLMs, . . . 2
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Motivation: Negative transfer

If different features are required for making predictions from data s to data t

(Figure 2), “negative” transfers—meaning that combining datasets s, t

performs worse than learning with target data t alone—are likely to occur

Figure 2: A red bird on water vs. A waterbird on land

Fundamental questions

1. Can we identify when negative transfers would happen?

2. Can we design algorithms to account for negative transfers?
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This talk

We will analyze transfer in neural networks from the lens of deep learning

theory. Then we design boosting algorithms to maximize positive transfers

High-level overview

1. Provide an analysis of transfer in multi-headed neural networks

• Observe a connection to two-layer neural networks [WZR20]

• Case study of linear regression under distribution shifts [YZW+20]

• Identification using linear surrogate models [LNZ23]

2. Design boosting algorithms for multitask learning

• Introduce a notion called higher-order task affinity [LJS+23]

• Design gradient-based estimation of task affinity [Working Paper]
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Related literature: Generalization in neural networks

• Norm/margin generalization bounds: given a hypothesis space of neural

networks H, bound the (worst-case) generalization gap over this

hypothesis space H
• Rademacher complexity bounds [BFT17] (uniform convergence)

• PAC-Bayesian bounds [AGN+18] (data dependent, e.g.,

Hessian-based [JLZ22])

• GD/SGD in nonconvex optimization

• Neural tangent kernels [ADH+19]: analysis of over-parameterization

• Implicit regularization [LMZ18]: in certain cases of using SGD, no

need for an explicit regularizer

• High-dimensional statistical analysis

• Precise asymptotics via random matrix theory [SC19]

• Benign overfitting [BLL+20]
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Transfer analysis in multi-headed neural networks
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Case study
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Setup

Multitask learning is usually conducted using a multi-headed neural network

[Car97]

• B: shared feature layer for all tasks

• Ai : output prediction layer for task i , for i = 1, 2, . . . , k

Figure 2: A multi-headed neural network for training k tasks

Observation: When B is a single layer and the activation is a linear map, this

architecture is a two-layer neural network, whose generalization properties have

been extensively studied
7
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Implication: How model capacity affects transfer

Case study of two linear regression tasks

• Task s: yi = x⊤
i β(s) + ϵi , for xi ∼ N(0,Σs), ϵi ∼ N(0, σ2 Id), i = 1, . . . , ns

• Task t: yi = x⊤
i β(t) + ϵi , for xi ∼ N(0,Σt), ϵi ∼ N(0, σ2 Id), i = 1, . . . , nt

Question: How does combining tasks s, t with the MTL network

compare with learning with target task t alone?

Proposition [WZR20]

If the width of layer B is at least 2, then combining s, t has the same

performance as learning t alone (contrary to beliefs in DL that more

parameters are better)

• Proof is via regression analysis when activation function σ is linear:

σ(x) = x ; also generalize to nonlinear activation (e.g., ReLU)

• Capacity too large → no interference

• Next: Capacity too small → destructive interference

8
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Data set shifts

Case study of two linear regression tasks

• Task s: yi = x⊤
i β(s) + ϵi , for xi ∼ N(0,Σs), ϵi ∼ N(0, σ2 Id), i = 1, . . . , ns

• Task t: yi = x⊤
i β(t) + ϵi , for xi ∼ N(0,Σt), ϵi ∼ N(0, σ2 Id), i = 1, . . . , nt

Types of data set shifts

• Covariate shift: Σs ̸= Σt

• Model shift: β(s) ̸= β(t)

• Data size imbalance: ns ̸= nt

Theorem [YZW+20]

We characterize the transfer effect of data set pooling for various

combinations of these shifts

9
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Vignette I: Covariate shift vs. data set sizes

Covariate shift can either help or hurt, depending on whether ns is greater than

nt or not

0 200 400 600 800 1000

n1

0.02

0.04

0.06

0.08

0.10

0.12

R
is

k

Empirical risk of HPS

HPS estimates: λ =10

HPS estimates: λ =4

HPS estimates: λ =2

HPS estimates: λ =1

Figure 3: When ns ≤ nt , having covariate shift helps; When ns > nt , having it hurts.

λ refers to the degree of covariate shift (higher is more severe, ns is n1 in the figure)
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Vignette II: Model shift vs. data set sizes

Depending on nt and the extent of model shift, the transfer effect can always

be positive (irrespective of ns), be positive for a restricted range of ns , always

be negative

0 200 400 600 800 1000
n1

0.08

0.10

0.12

0.14

0.16

R
is

k

Empirical risk of OLS

Empirical risk of HPS

Our estimates (µ = 0.45)

Our estimates (µ = 0.35)

Our estimates (µ = 0.3)

Our estimates (µ = 0.2)

Figure 4: The gray line refers to the empirical excess risk of Ordinary Least Squares on

t. Any point above the gray link represents negative transfer, while any point below

represents positive transfer. µ controls the model shift so that
∥∥β(s) − β(t)

∥∥2 = 2µ2.
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Beyond linear regression

What can we say beyond the case study?

• “Discrepancy” notions from the learning theory literature measure the

distance between two tasks

• H-divergence [BBC+10] between two distributions D and D ′ on domain X

dH(D,D ′) = 2 sup
h∈H

∣∣∣∣PrD [I (h)]− Pr
D′
[I (h′)]

∣∣∣∣
where H is a hypothesis class on domain X , and I (h) is the characteristic

function satisfying x ∈ I (h) ⇔ h(x) = 1

• Challenge: Difficult to implement H-divergence within neural networks

12
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Our approach

Define a value function to quantify the “discrepancy” between source and

target tasks

• Accommodates any number of source tasks

• Scales to a large number of source tasks

Definition [LNZ23]

• There are k source tasks: {1, 2, · · · , k}, and a target task t

• For any S ⊆ {1, 2, · · · , k}, a neural net is trained by combining S and t

• The out-of-sample error of this NN on the target task is defined as the

value function of S , denoted as f (S) ∈ R, for every S

Note: If we could evaluate all possible f (S), then we can find the best subset

of source tasks that minimizes f (S)

Computationally expensive due to 2k subsets

Question: Find the subset that minimizes the value function without

exhaustive search?
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Surrogate models

Estimate a surrogate model to approximate the value function

• gθ(S): A surrogate model parameterized by θ

• Linear surrogate model: θ = (θ1, · · · , θk) ∈ Rk and

gθ(S) =
∑
s∈S

θs

• θs ∈ R for every source task s: smaller θs ⇒ s is more relevant to t

Remark: Inspired by Datamodels [IPE+22], which uses linear models to

approximate the performance of NNs

Estimation

• Sample m subsets: S1, S2, . . . , Sm, compute f (Si )

• Estimate θ̂ by minimizing

L̂(θ) =
1

m

m∑
i=1

(f (Si )− gθ(Si ))
2
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Best subset selection using surrogate models

Task modeling [LNZ23]

Goal: find the subset S that has the smallest f (S)

• Fit a surrogate model: estimate θ̂ in the linear surrogate model gθ(S)

• Select S : a source task is selected if θ̂s < γ for a threshold γ, and

S∗ = {s : θ̂s < γ}

15
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Figure 5: Illustration of two-step procedure in task modeling
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Results

Theoretical results: linear sample complexity and running time to estimate θ

in the number of source tasks k

Experimental results: experiments on weak supervision, GLUE, and

FolkTables (multi-group fairness)

• > 0.8 F1-score for predicting negative transfers on unseen subsets

• > 4% performance improvement in weak supervision data sets over

existing methods
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Higher-order task relationships

Motivation: The effect of adding a source task depends on what other tasks

are in S

Example: Source task 1 is a negative task, while source task 2 is a positive

task to target task t

• The OOS error of S = {1} is higher than that of S = {∅}

• The OOS error of S = {2} is lower than that of S = {∅}

• The OOS error of S = {1, 2} is higher than that of S = {1}
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Figure 6: Accuracy improvement for different number of tasks: 1 indicates S = {∅}
(only trained on target task), 2 indicates S = {1} and 3 indicates S = {1, 2}.
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Higher-order task affinity

Define a higher-order value function to quantify “discrepancy” between source

task s and target task t accounting for presence of other source tasks

Definition

Let f̄ (s) be the average out-of-sample error on target task t over all possible

subsets of source tasks S ⊆ {1, 2, · · · , k − 1} that contain task s

f̄ (s) =
1

2k−2

∑
S∈{1,··· ,k−1}:s∈S

f (S) ,

where 2k−2 is the number of subsets of {1, · · · , k − 1} that includes the

source task s.

Estimation: Randomly sample m subsets S1, S2, . . . , Sm, average over the

subsets that include s, t, for every s and t in 1, 2, . . . , k
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Task grouping

Boosting procedure [LJS+23]

1. Estimate a k by k higher-order task affinity matrix, denoted as M̂

2. Find a clustering of 1, 2, . . . , k into S1, S2, . . . , S|C | by maximizing the

average density within each cluster

3. For each cluster Si , train a separate NN for tasks within that subset

Choices of clustering

• Spectral clustering

• Lloyd’s algorithm

• Semi-definite programming relaxation

Conceptually similar to boosting (bagging more precisely)
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Experimental results

1. Sampling Task Subsets 2. Computing MTL Performances 4. Grouping Tasks by Clustering 

GNN
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Figure 7: Illustration of the boosting procedure

We find that this boosting procedure can outperform naive multitask learning

by ∼ 4% and existing task grouping methods by > 2%
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Efficient algorithms for computing task affinity

The boosting procedure requires repeatedly training many multitask models,

which is still computationally expensive

Examples

• Higher-order task affinity: m = O(k) random subsets S1, S2, . . . , Sm, each

of size α

• Pairwise task affinity:
(
k
2

)
subsets, including {1, 2} , {1, 3} , . . . , {1, k},

{2, 3} , . . . , {2, k} , . . . , {k − 1, k}

• Forward selection:
(
k
2

)
subsets, including {1} , {1, 2} , . . . , {1, k}; if i1 is

selected, then {1, i1, 2} , {1, i1, 3} , . . . , {1, ii , k}; and so on

Can we enable this computation without this repeated multitask model

training?
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Gradient-based estimation

First train a meta-initialization on all tasks, then, estimate the fine-tuned

model by aligning the gradients at the initialization to the task labels

𝜽⋆
𝛻!𝑓(𝑆")

𝛻!𝑓(𝑆#)

𝛻!𝑓(𝑆$)

&𝑾𝑺𝟏

&𝑾𝑺𝟐

&𝑾𝑺𝒎

Pre-training on all tasks
Estimation on a task subset

Figure 8: We replace multitask training with a regression-based estimation of model

parameters fine-tuned on a particular subset of tasks.
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Linearization of fine-tuned models

If W (the fine-tuned model parameter) is close to θ⋆ (the meta-initialization

model parameter), fW (x , y) can be approximated by

fW (x , y) ≈ fθ⋆(x , y) +∇W fθ⋆(x , y)
⊤(W − θ⋆) + ϵ. (1)
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Linearization of fine-tuned models

If W (the fine-tuned model parameter) is close to θ⋆ (the meta-initialization

model parameter), fW (x , y) can be approximated by

fW (x , y) ≈ fθ⋆(x , y) +∇W fθ⋆(x , y)
⊤(W − θ⋆) + ϵ. (1)

Table 1: Measuring ϵ for models fine-tuned from an initialization pre-trained on all

tasks. The results are averaged over 100 random task subsets.

GNN BERT T5

Distance RSS Distance RSS Distance RSS

1% 4.2× 10−4 1% 3.6× 10−6 1% 3.8× 10−6

2% 9.5× 10−4 2% 5.4× 10−6 2% 6.0× 10−5

3% 1.1× 10−3 3% 3.0× 10−5 3% 3.2× 10−5

4% 2.5× 10−3 4% 1.5× 10−4 4% 2.6× 10−4

5% 6.8× 10−3 5% 2.2× 10−4 5% 6.3× 10−4

6% 7.5× 10−3 6% 5.7× 10−4 6% 8.4× 10−4

7% 9.0× 10−3 7% 9.9× 10−4 7% 1.4× 10−3

8% 9.3× 10−3 8% 9.0× 10−4 8% 2.5× 10−3

9% 1.2× 10−2 9% 2.2× 10−3 9% 3.3× 10−3

10% 3.4× 10−2 10% 5.1× 10−3 10% 4.1× 10−3
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Task affinity estimation

Algorithm [Working Paper]

1. Approximate NN output with Taylor’s expansion (1), ignoring the ϵ errors

2. Estimate ŴSi by fitting a logistic regression from fW (x , y) to y , for every

subset Si

Proposition [Working Paper]

Provided ϵ is small, this algorithm will recover the true loss function accurately
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2. Estimate ŴSi by fitting a logistic regression from fW (x , y) to y , for every

subset Si

Proposition [Working Paper]

Provided ϵ is small, this algorithm will recover the true loss function accurately

25



Task affinity estimation

Algorithm [Working Paper]

1. Approximate NN output with Taylor’s expansion (1), ignoring the ϵ errors
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Figure 9: The number of GPU hours vs. the number of tasks to compute pairwise

affinity, evaluated on a graph with 21M edges and 500 labeling tasks.
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Discussion and open questions

A large part of this work is recent, so there are many opportunities for future

work

• Can we better flesh out the connection between boosting and multitask

learning? Note there is extensive literature on boosting algorithms for

supervised learning

• Apply the gradient-based estimation to large-scale data sets in foundation

models?

• Efficiently computing influence functions to capture higher-order

correlation in foundation models?

Applications

• Model personalization

• Data privacy
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Conclusion

This talk covers our work to develop the algorithmic foundations of multitask

learning. Key takeaways:

• Using linear surrogate models can accurately identify negative transfers

• Boosting helps multitask learning performance when task relationships are

highly complex

Many open directions and deeper connections to deep learning theory,

boosting, influence functions, differential privacy for future work
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