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Abstract. Information cascades on social networks, such as retweet cas-
cades on Twitter, have been often viewed as an epidemiological process,
with the associated notion of virality to capture popular cascades that
spread across the network. The notion of structural virality (or average
path length) has been posited as a measure of global spread.
In this paper, we argue that this simple epidemiological view, though
analytically compelling, is not the entire story. We first show empirically
that the classical SIR diffusion process on the Twitter graph, even with
the best possible distribution of infectiousness parameter, cannot explain
the nature of observed retweet cascades on Twitter. More specifically,
rather than spreading further from the source as the SIR model would
predict, many cascades that have several retweets from direct followers,
die out quickly beyond that.
We show that our empirical observations can be reconciled if we take
interests of users and tweets into account. In particular, we consider a
model where users have multi-dimensional interests, and connect to other
users based on similarity in interests. Tweets are correspondingly labeled
with interests, and propagate only in the subgraph of interested users via
the SIR process. In this model, interests can be either narrow or broad,
with the narrowest interest corresponding to a star graph on the inter-
ested users, with the root being the source of the tweet, and the broadest
interest spanning the whole graph. We show that if tweets are generated
using such a mix of interests, coupled with a varying infectiousness pa-
rameter, then we can qualitatively explain our observation that cascades
die out much more quickly than is predicted by the SIR model. In the
same breath, this model also explains how cascades can have large size,
but low “structural virality” or average path length.

1 Introduction

Information cascades are among the most widely studied phenomena in social
networks. There is a vast literature on modeling the spread of these cascades
as diffusion processes, studying the kinds of diffusion trees that arise, as well
as trying to predict the global spread (or virality) of these cascades [16, 9, 4, 11,
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12, 8]. A specific example of such a diffusion process, which is the focus of this
paper, are retweet cascades on Twitter.

Extant models of information cascades build on classical epidemiological
models for spread of infectious diseases [5]. The simplest of these is the SIR
model, where a node in the network can be in one of three states at any time:
Susceptible (S); Infected (I); and Recovered (R). Nodes in the network switch
their states due to infections transmitted over the network, and the rate of these
infections is governed by an infectiousness parameter, p. The SIR model unfolds
via the following process: all nodes are initially in state S except the source (or
a set of nodes called the “seed set”), which is in state I. Every node which is
in state I infects each of its neighbors independently with probability p, before
moving itself to state R. If a node in state S gets infected, it moves to state I.
This process naturally quiesces with all nodes settling in their final state, and
all nodes that were ever in state I are considered to have acquired the infection.
There is a natural and trivial mapping of this model to information cascades,
where the infectiousness parameter p serves to measure the interestingness of
the piece of information, in our case, a tweet. In epidemiology, the goal is to
differentiate infections that die out quickly from those that spread to the whole
network; analogously, information cascades are deemed viral if their global reach
is large.

The above view of information cascades as the spreading of content through
the network is intuitively and analytically appealing. In fact, Goel et al. show
that when simulated on a scale-free graph, the SIR model statistically mim-
ics important properties of retweet cascades on Twitter. In particular, they use
structural virality, or average path length in the diffusion tree, as a quantitative
measure of “infectiousness” of a cascade, and show that the distribution of cas-
cade sizes (number of users that retweet a tweet plus the author of the tweet) and
structural virality are statistically similar to that from the simulations. On the
other hand, these empirical studies also show that cascades observed in Twitter
are mostly shallow and exceedingly rare: Goel et al. [7] show there are no viral
cascades in a corpus of a million tweets; and in subsequent work [6], show that
viral cascades do indeed exist if the corpus size is increased to a billion tweets.
This data contrasts with the observation that social networks like Twitter have
a power-law degree distribution [13], and these networks should have low epi-
demic threshold, so that even with low infectiousness parameter p, most cascades
should be viral [2, 1]. Therefore, explaining the low frequency of viral events on
Twitter via an SIR model requires that the infectiousness parameter be quite
low almost all the time. Finally, this result also begs the question of whether
modeling viral events if even of any interest if these events are so rare.

We therefore ask: Is there something fundamental about real-world informa-

tion cascades, particularly those on Twitter, that is not captured by the simple

SIR model? Though this question is about a specific social network, and a specific
(simplistic) epidemiological model, even understanding this via suitably designed
experiments is challenging, and has not been performed before.
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1.1 Our Contributions

In the process of answering the above question, we make the following contribu-
tions.

Evaluating Epidemic Models Through Twitter Network Our main contribution
is to show that the SIR model is a poor fit for information flow on Twitter. We
show this by empirically testing the hypothesis that retweet cascades on Twitter
propagate using the SIR process. Our null hypothesis is that each cascade has
an underlying infectiousness p (that could be different for different cascades),
and conditioned on receiving the tweet, a user retweets it with probability p.
We compare the value of p that we obtain by best-fit for the users directly
connected to the source of the tweet (level 1 followers), and those who receive
the tweet from a direct follower of the source (level 2 followers). Using a corpus
of 8 million cascades, we develop a statistical test to show that these two values
of p are different – the second level value is significantly smaller than the first.
The technically interesting part of this analysis is the fact that most cascades
are shallow. Thus, many tweets generate very few retweets at the first level,
and this number dictates the number of tweet impressions and retweets at the
second level. The SIR model therefore corresponds to a stochastic process for the
retweets that has very low mean but potentially very high variance because of the
skewed degree distribution of the graph. We have to therefore devise a statistical
test that works around this high variance. Apart from this statistical test, at a
coarse level, we find that the median value of first level infection probability
is 0.00046, while the median value of second level infection probability is 0 (in
other words, half of the tweets do not have second level retweets!). Even among
the tweets that have at least 1000 impressions at the first level, more than 80%
of them, have that first level p is at least twice the second level p. This suggests
that, rather than spreading further from the source, a cascade typically dies out
quickly within a few hops.5 This echoes with the observation that most of the
cascades tend to be star-like trees [16]. It also suggests an explanation for truly
viral cascades being so rare [6].

Interest-based SIR Model Since the SIR model assumption of fixed propagation
probability per cascade is statistically violated on Twitter, we propose an alter-
native model for retweet cascades. In particular, we present a tweet propagation
model that takes interests of users and tweets into account. In order to do this,
we revisit a Kronecker graph-based model for social networks first considered
in [3]. In this attribute based model, users have attribute vectors in some d-
dimensions, and interests are specified by a subset of these dimensions along
with their attribute values. If fewer dimensions are specified, these interests are
broad and encompass many users; if many dimensions are specified, these inter-
ests are narrow with a shallow component around the source. Tweets are also
correspondingly labeled with interests, and propagate only in the subgraph of

5 Indeed, the median of first level impressions is 175, while the median of second level
impressions is 29!
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interested users via a SIR process with infectiousness drawn from a distribution.
We show that if tweets are generated using such a mix of narrow and broad
interests, then this coupled with a varying infectiousness parameter can qualita-
tively explain the level-one infectiousness being larger than subsequent levels. As
a simple intuition, observe that cascades corresponding to narrow interests only
reside in their shallow subgraphs, while those corresponding to broad interests
can be “viral” in the usual sense.

As mentioned above, Goel et al. [6] define the notion of structural virality,
or average path length of a cascade as a measure of its virality. They show that
this measure is uncorrelated with the size of the cascade, except when structural
virality is large. The proposed explanation in their work is an SIR model on a
scale-free graph with extremely low infectiousness parameter. Our model leads
to a different explanation: cascades corresponding to narrow interests have low
structural virality, but can have large size. This explanation does not depend on
any specific setting of the infectiousness parameter, and is therefore of indepen-
dent interest. Finally, we show that cascades arising for broad interests can have
large structural virality, but our model would predict a large expected size as
well, which again matches previous empirical findings.

1.2 Related Work

Epidemic models on social networks have received a lot of attention in the past
decade, and we won’t attempt to review the large literature here. Instead, we
point the reader to a small set of representative papers and the excellent sur-
vey articles and books on the topic [11, 5, 12, 14, 9, 4]. Despite all the attention
on studying diffusion, there has been relatively little work evaluating epidemic
models on social networks such as Twitter [14, 19, 6]. In particular, we believe
that the empirical testing of structural properties of cascades on the Twitter
graph (as opposed to a specific generative model) is unique to our work.

Part of the reason, as has been pointed out in [6], is that only recently have
large datasets of information contents become available. In the same work, the
authors defined the notion of structural virality and observe that it is very rare
to observe structurally viral cascades, but they can find these rare cascades by
obtaining a large collection of tweets. By carefully choosing the infectiousness
parameter of the SIR model on a power law network, they are able to repro-
duce many empirical statistics of the observed cascades distribution, such as the
probability that a piece of content gains at least 100 adopters, and the mean
structural virality. However, they also point out that other important statistics
does not match with the empirical distribution. For example, the variance is
much smaller in the simulated model, compared to the empirical distribution.
We present an alternative interest-based model for explaining the same phenom-
ena, while comprehensively refuting the SIR hypothesis.

Similarly, Leskovec et al. [16] were able to fit cascade sizes and degree dis-
tributions of a large collection of blogs, with the SIS model defined by an in-
fectiousness parameter. We also want to mention a study of user adoption on
Facebook, Ugander et al. [19] find that the probability of users joining Facebook
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is dependent on the number of connected components in an user’s ego network
(or neighborhood graph), rather than by the size of the ego network. Note that
this work studied user adoption rather than content diffusion, but the observa-
tion that sub-structures in the network can dominate network size for adoption
is in general agreement with our proposed model.

2 Evaluating the SIR Model on the Twitter Network

In this section, we describe our evaluation of the simple SIR model on eight mil-
lion retweet cascades observed on Twitter. These retweet cascades are collected
from a single week and each cascade is restricted to be started by a user based
in the US. In our analysis, we have excluded tweets posted by Twitter accounts
that are likely to be spammers using an internal quality detection tool.6 For
each tweet, we collect the information described in Table 1. Note that we use
the number of followers of a user as a proxy for the number of impressions of the
user’s tweets. While we could also count impressions directly on Twitter, this
would not correctly represent the significant fraction of users that visit Twitter
through third-party clients. All the information described in Table 1 could be
collected through the public Twitter APIs. 7 While we used Twitter’s internal
spam detection mechanism to filter away potential spam users, we believe that
exploiting well-known features (for example pagerank values) would also achieve
the same results for our task.

2.1 Defining the Null Hypothesis

Let us fix a given set of tweets T . For each tweet t ∈ T , let p1(t) and p2(t)
denote the underlying retweet rate at the first level and second level of the
Twitter graph, respectively. Note that these parameters are fixed but unknown
for any given tweet. The dependence of p1 and p2 on t models the fact that
different tweets can have different infectiousness. Our null hypothesis is that
p1(t) = p2(t) for all t ∈ T , which corresponds to cascade propagation via the
simple SIR model. A different, but equivalent view of the null hypothesis is that
it posits p1(t) is drawn from some distribution, and conditioned on this, we set
p2(t) = p1(t).

The stochastic process, given a tweet t and corresponding underlying p1(t)
and p2(t) unfolds as follows (we omit t for notational convenience): let the value
v1 be a (non-random) parameter associated with the tweet source. Then r1 ∼
B(v1, p1) is a Binomial random variable with parameters v1 and the unknown p1.
We will assume that v2 (th) is nonzero whenever r1 is nonzero. Since v2 is defined
as the total number of followers among those who retweet the source tweet, if
this value is zero with r1 being non-zero, then the source user is very likely to
be a spammer. However, since we eliminated spam sources in our filtering step,

6 A lot of spam tweets have star-like cascade structure that may significantly impact
the experiment results while not representing general user behavior.

7 https://dev.twitter.com/streaming/public
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this event is very unlikely in our dataset. Now, r2 is a random variable that is
generated according to B(v2, p2). Note that we are modelling r2 as a Binomial
random variable, since it is easier to present than the SIR process. As a matter
of fact, there is no difference to our conclusions if r2 is generated according to
the SIR process. The reason for that is Lemma 1 will continue to hold under the
SIR process. We observe a realization of the random variables, v2, r1, and r2.

v1 Number of followers of the source node (the size of N1(τ))
r1 Number of retweets among the set of nodes N1(τ) (the size of R1(τ))
v2 Number of nodes that follow any nodes in R1(τ) (the size of N2(τ))
r2 Number of retweets among the set of nodes in N2(τ)

Table 1. A list of observed information for a tweet τ , posted by a node s. Let N1(τ)
denote the set of nodes that follow the node s. Let R1(τ) denote the subset of nodes
among N1(τ) that retweet the tweet τ . And let N2(τ) denote the set of nodes that
follow any nodes in R1(τ).

0 1

r1/v1

0

1/3

r 2
/v

2

Fig. 1. A scatter plot of ten thousand sampled tweets. The y-axis has been truncated
since there are no points beyond 1/3 in the samples.

2.2 Refuting the SIR Model

We will now refute the null hypothesis, i.e., show that p1(t) > p2(t) for almost
all t ∈ T . Observe that if r1(t) and r2(t) are sufficiently large, then by standard

concentration bounds, r1(t)
v1(t)

will be a good approximation to p1(t), and likewise

for p2(t). A natural approach is therefore to compare the empirical average of
r1(t)
v1(t)

over t ∈ T to the empirical average of r2(t)
v2(t)

. If these are different, that would

refute p1(t) = p2(t) for all t ∈ T . In Figure 2.1, we plot these empirical values,
and this provides some evidence that the null hypothesis is false. However, this
approach is not quite statistically rigorous.

Specifically, the problem with this approach is that when r1(t) is zero, then
v2(t) is zero and p2(t) remains undefined. However, if we filter away any tweet
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whose r1(t) = 0, then we could potentially bias the estimation of p1(t) as well.
To overcome this issue, we will correct the bias by subtracting a corresponding

factor in r1(t)
v1(t)

.

In the lemmas and definitions below, the expectation is over the stochastic
process described above, where v2, r1, r2 are random variables. For each tweet
t ∈ T we define the following random variables:

X2(t) =

{

r2(t)/v2(t) if v2(t) > 0
0 if v2(t) = 0

(1)

X1(t) = r1(t)/v1(t)− f0(t) (2)

where f0(t) = ( v1(t)
v1(t)+1 )

v1(t)+1/v1(t).

Lemma 1. Under the null hypothesis that p1(t) = p2(t), we have EX2(t) ≥
EX1(t), for any t ∈ T .

Proof. Note that

EX2(t) = p(t) Pr(v2(t) 6= 0) = p(t) Pr(r1(t) 6= 0),

by our assumption that v2(t) = 0 if and only if r1(t) = 0. Further,

EX1(t) = p(t)− f0(t)

The conclusion follows since:

p(t) Pr(r1(t) = 0) = p(t)× (1− p(t))v1(t) ≤ f0(t).

where the last inequality is obtained by observing the maximum value of the
function p(t)× (1− p(t))v1(t) of p(t).

For any subset T of tweets, let χ1 =
∑

t∈T X1(t) and χ2 =
∑

t∈T X2(t). We
compute the observed values of χ1 and χ2 for several different buckets of tweets
T , grouped by ranges over number of first level impressions. These buckets are
shown in Table 2. Based on the second and third columns, we conclude that the
average observed X2 is less than the average observed X1, thereby contradicting
the null hypothesis.

Now we examine the significance of the above finding. The idea is that since
both χ1 and χ2 are sums of independent random variables in the range [0, 1],
the observed values should be concentrated around the mean value. While we
don’t know the mean values, Eχ1 and Eχ2, we can obtain an upper bound of
the desired probability, by maximizing over all possible values of Eχ1 and Eχ2,
subject to the null hypothesis, Lemma 1. This is summarized in the following
Lemma:

Lemma 2. For a set of tweets T with observed values of χ1 ≥ χ2, the probability

that such an observation could happen under the null hypothesis, p1(t) = p2(t)
for all t ∈ T , can be upper bounded by:

2 exp(−
2
√

2(χ2
1 + χ2

2)− 2χ1 − 2χ2

3
).
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v1 number of tweets χ1 χ2 p-value

(0, ∞) 3766k 3017 836 0.0
(100, 1000) 359k 690 109 10−100

(1000, 10000) 2133k 1830 531 10−150

(10000, ∞) 1274k 477 195 10−30

Table 2. Experimental results for several different buckets of tweets. See main text for
more details.

Proof. Let t1 = Eχ1 and t2 = Eχ2. By Chernoff bound (cf Corollary 4.6 [18]),

Pr(|χ1 − t1| ≥ δ1t1) ≤ 2 exp(−t1δ
2
1)/3

Pr(|χ2 − t2| ≥ δ2t2) ≤ 2 exp(−t2δ
2
2)/3

Hence

max
t2≥t1>0

Pr(|χ1 − t1| ≥ δ1t1, |χ2 − t2| ≥ δ2t2)

≤ max
t2≥t1>0

2 exp(−(t1δ
2
1 + t2δ

2
2)/3)

= max
t2≥t1>0

2 exp(−(
χ2
1

t1
+ t1 +

χ2
2

t2
+ t2 − 2χ1 − 2χ2)/3) (3)

Consider two cases,

1. if t2 ≤ χ1, then we know that
χ2

1

t1
+ t1 ≥

χ2

1

t2
+ t2, and (3) can be upper

bounded by

2 exp(−
2
√

2(χ2
1 + χ2

2)− 2χ1 − 2χ2

3
)

when t2 = t1 =

√

χ2

1
+χ2

2

2 .

2. if t2 > χ1, then we know that
χ2

1

t1
+ t1 ≥ 2χ1, and

χ2

1

t1
+ t1 ≥

χ2

1

χ1

+ χ1. Then

(3) can be upper bounded by

2 exp(−(
χ2
1

χ1
+ χ1 − 2χ2)/3)

when t1 = t2 = χ1. And it’s not hard to check that this is smaller than the
bound obtained in the first case.

We compute these probabilities and show them as p-values in Table 2. This
shows that the observed χ1, χ2 are highly unlikely under the null hypothesis.

Finally, we note that the above analysis does not necessarily show that
p1(t) > p2(t) for almost all t in our corpus. To address this concern, we ran-
domly sample 1% of the tweets, run the same analysis, and repeat for 10000
times. Figure 2.2 plots the histogram of p-values that we obtain. Since we ob-
served consistently low p-values among all the samples, this shows that the null
hypothesis of p1(t) = p2(t) for all t ∈ T is very unlikely to hold in our dataset.
In fact, our analysis shows that p1(t) is almost always bigger than p2(t).
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Fig. 2. The histogram of p-values obtained from 10000 random subset of tweets. Each
random subset contains 1% of all tweets.

3 An Interest Based Model for Tweet Propagation

We now show that the above empirical observations are consistent with the
following model: Users have interests and connect to other users based on simi-
larities in interests. Each tweet corresponds to an interest (either a broad interest
or a narrow interest) and is retweeted only by users with the corresponding in-
terest. We formalize this model below, and show how it can qualitatively explain
our observations.

We adapt the Kronecker interest model formulated in [3]. This is based on
the Kronecker social graph, which has been studied as a reasonable theoretical
model for social networks [15, 17]. We note that some of the model assumptions
below are not an exact fit for social networks; nevertheless, this model captures
most high-level statistical properties observed in reality, in addition to being
easy to interpret. In our model, parametrized by a small number K, there are
|V | = n users, and d = logK n attributes, each with K possible values from the
set S = {a1, a2, . . . , aK}. Each node u ∈ V maps to a d-dimensional vector of
attribute values (u1, u2, . . . , ud), where each ui ∈ S. Therefore, |V | = Kd = n.
Treat the values in S as theK vertices of an undirected seed graphG0, and denote
the adjacency matrix of this graph as A. Assume A[as, as] = 1 for 1 ≤ s ≤ K.

For each u = (u1, u2, . . . , ud) and v = (v1, v2, . . . , vd), the edge (u, v) exists
iff A[uj , vj ] = 1 for all j = 1, 2, . . . , d. We define an interest as a set of pairs
of attribute dimensions and their values, where a generic interest i ∈ I has the
following form:

i = {〈j1, aj1〉, 〈j2, aj2〉, . . . , 〈jr, ajr 〉} where j1, j2, . . . , jr ≤ K and r ≤ d
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The consumers of this interest are defined as:

Ci = {u = (u1, u2, . . . , ud) | A[uj , aj ] = 1 ∀〈j, aj〉 ∈ i}

Similarly, the producers of this interest are defined as:

Pi = {u = (u1, u2, . . . , ud) | uj = aj ∀〈j, aj〉 ∈ i}

The above interest model has the following interpretation. Since each interest
is specified by a subset of attributes along with their values, the graph G0 and
adjacency matrix A specify which interests are related, i.e. which interests specify
an interested in relationship. We classify interests are narrow or broad. The
narrowest interests have |i| = d, and the broadest interest has |i| = 0. Further,
these interests have a natural hierarchical structure, where the broader interests
are those specified by fewer attributes. Also note that a producer of an interest
needs to align with it’s attribute values on all the relevant attribute dimensions,
while a consumer of an interest only needs to be interested in those attribute
values in the relevant attribute dimensions.

We parametrize the tweet propagation process by two distributions: There
is an interest distribution F and a SIR parameter distribution G. We choose
an interest i at random from distribution F ; choose a producer u uniformly at
random from Pi, and choose an infectiousness p at random from G. The tweet
originates at u, and propagates using the SIR model with parameter p on the
subgraph induced by Ci.

We now perform some calculations to understand the behavior of this process
for various interest sizes. In order to simplify these calculations, we assume G0

is regular with degree w, and denote A = wd as the degree of each user. We
assume A ≫ w. Note that G0 has K vertices, so w ≤ K. We denote d− |i| = s
as the size of the interest. We further assume that the infectiousness parameter
p is small so that wp ≪ 1; on the other hand, we assume it is large enough that
Ap ≫ 1. We note that these assumptions are only to derive simple formulas
that can be qualitatively interpreted. We need to use more nuanced parameter
settings to model real social networks, but these will not affect the high-level
qualitative nature of our conclusions.

Narrowest Interests, s = 0 In this case, |Pi| = 1, so that there is one user u
who is a potential producer. This user is directly connected to all users in Ci.
Therefore, for any p, the size of the cascade is Ap, and the structural virality is
exactly 2.

Narrow Interest, s = 1 In this case, |Pi| = K, and these producers are connected
as G0. Assume all these producers have the first d − 1 coordinates of their
attribute vector fixed to one value, and the final coordinate taking one of K
possible values. The consumers Ci are all the neighbors of Pi. For small enough
p, let wp = δ ∈ (0, 1). Then we approximately have Size = A

w
δ(1 + δ), and

SV = 2+ δ
2 . In this case, though structural virality grows very slowly with size,

a large structural virality implies a large size but not necessarily the other way
around.
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Broad Interest, s = d In this case, |Pi| = n. Assuming Ap ≫ 1, the expected
size of the cascade is (Ap)h, where h = logA n is the depth of the process.
The structural virality is 2h regardless of p. Therefore, for broad interests with
moderate infectiousness p, we expect a high value of structural virality, and
a correspondingly high value of size. Therefore, in our model, a high value of
structural virality corresponds to a broader interest, and these cascades also have
large size.

4 Conclusion

In this paper, we performed an empirical examination of the SIR epidemic model
on a large selection of retweet cascades on Twitter. The experimental results re-
fute the null hypothesis, and show that the SIR model does not fit the empirical
observations. This is because retweet rates decrease as a cascade propagates
further from the source, contradicting the fixed probability per cascade assump-
tion in the SIR model. We also proposed an alternative interest-based diffusion
model, where users retweet based on overlapping interests with a tweet. It is
an interesting future challenge to empirically test the interest-based diffusion
model. Indeed, in preliminary experiments we often found that structurally vi-
ral cascades correspond to “broad” topics that also have a very large size. In
particular, we tweets containing jokes, appeals for finding a lost person, and
“not safe for work” (NSFW) content are common among large structurally viral
retweet cascades. On the other hand, tweets that correspond to “narrow” topics
(niche sports and other topical content) usually have small structural virality.
We leave it to future work to validate these observations on a large scale.

We also emphasize that our work is specific to the flow on information in
social networks such as Twitter, and on fitting the simple SIR model (with
possibly different levels of infectiousness or interestingness for different tweets)
to it. We view this work as one further step towards validating simple models for
information spreading. Given the format of retweets on Twitter where multiple
retweets to a user can be suppressed, we have not considered threshold models
(such as in [10]) that are based on a user receiving multiple copies of the message
from different sources. We note that such threshold models have been extensively
investigated in other diffusion contexts such as adoption of new technologies, and
are likely appropriate for spread of information cascades in other social media.
This makes it a good topic for future investigation. We also note that the interest-
based model, coupled with SIR on the appropriate interest subgraph, is only one
possible explanation for our observations. It is an interesting research direction
to see if there are other possible explanations, such as local structure in networks,
epidemic thresholds, etc that can be empirically validated. Finally, an interesting
direction is to explore alternative notions of virality other than structural virality.
In particular, is there a way to capture “viral” events that are specific to a group
of friends, or inside a community? We believe that understanding these questions
will also provide new insights for content recommendation and targeting on social
networks.
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